首页|增强-检测级联SAR地面目标检测网络

增强-检测级联SAR地面目标检测网络

扫码查看
在合成孔径雷达地面目标检测任务中,传统检测方法因为在处理过程中采用固定模型假设而导致性能严重下降.卷积神经网络作为一种基于数据驱动的方法,在拥有足够的训练集时可以显著提高目标检测的准确性,但在检测陆地背景下的微小目标时性能仍不稳定.为了应对这些挑战,提出了一种先增强后检测的地面目标检测框架.其中包括以Transformer为骨干网络的增强网络、增强目标特征区分度的跨特征空间注意力模块以及具有多尺度特征的检测网络.形成一个级联的目标检测网络架构,以实现更好的推理性能.使用MSTAR基准数据集对提出的网络进行实验,证明提出的级联网络在各项指标上超过其他现有方法,其精度最高可以达到93.6%.
Enhancement-detection cascade network for SAR ground target detection
In synthetic aperture radar ground targets detection tasks,the conventional methods usually suffer from a severe performance loss for taking a fixed model assumption in processing.As a type of data-based method,the convolutional neural network can significantly improve the detection accuracy with a sufficient training set,but its performance is still instability when detecting tiny and blurred targets in strong ground background.To address these challenges,this article proposed a cascade network.A multi-function enhanced network based on a Transformer backbone is designed to focus on ground target characteristics.Specially,to heighten the discrimination of the target features,a cross-feature spatial attention module is then proposed following the enhancement.In the second stage,a detection network with multi-scale features is designed for detecting ground targets.A joint two-stage loss function is formed for achieving better reasoning performance.In extensive experiments on the Moving and Stationary Target Acquisition and Recognition(MSTAR)benchmark dataset,the results show that the proposed method can outperform other existing methods,concretely,the precision can reach 93.6% .

Synthetic Aperture Radar(SAR)ground target detectionAutomatic Target Recognition(ATR)Transformer network

陈宝翔、行坤

展开 >

中国科学院空天信息创新研究院,北京 100094

中国科学院大学电子电气与通信工程学院,北京 100049

合成孔径雷达 地面目标检测 自动目标识别 Transformer网络

2025

电子设计工程
西安三才科技实业有限公司

电子设计工程

影响因子:0.333
ISSN:1674-6236
年,卷(期):2025.33(3)