首页|基于机器学习的原子识别以及非线性漂移校正

基于机器学习的原子识别以及非线性漂移校正

扫码查看
球差校正扫描透射电子显微镜(scanning transmission electron microscope,STEM)是一种重要的微观结构表征手段.然而,由于电子束和样品漂移等问题,极大影响了 STEM图像的质量和后续分析.针对上述问题,本文引入机器学习,改进了原子识别的方法,并在此基础上进行了元素分类;另外,针对单张STEM图像,在原子识别的基础上,提出了快速非线性漂移校正的方法,解决了以往漂移校正方法依赖较多数据的问题,此方法适用于辐照敏感材料的漂移校正,显著提高了 STEM图像的解析效率.
Atomic identification and nonlinear drift correction based on machine learning
Spherical aberration-corrected scanning transmission electron microscopy(STEM)is a crucial tool for characterizing microscale structures.However,issues such as electron beam and sample drift can significantly affect the quality of STEM images and subsequent analysis.To address these challenges,this paper introduced a machine learning approach to improve atomic identification,followed by elemental classification.Additionally,a rapid nonlinear drift correction method for a single STEM image was proposed,building upon atomic identification.This method overcomed the previous data-dependency issue in drift correction and was applicable for drift correction in radiation-sensitive materials.It significantly enhanced the resolution efficiency of STEM images.

nonlinear drift correctionatomic identificationmachine learningtransmission electron microscopy

黄子扬、刘曦、王怀远、黄瑞龙、郑赫、赵培丽、贾双凤、王建波

展开 >

武汉大学物理科学与技术学院,电子显微镜中心,人工微结构教育部重点实验室和高等研究院,湖北武汉 430072

武汉大学科研公共服务条件平台,湖北武汉 430072

非线性漂移校正 原子识别 机器学习 透射电子显微学

2024

电子显微学报
中国物理学会

电子显微学报

CSTPCD北大核心
影响因子:0.431
ISSN:1000-6281
年,卷(期):2024.43(6)