首页|高温高应变下Cu/Ta界面扩散行为的分子动力学模拟

高温高应变下Cu/Ta界面扩散行为的分子动力学模拟

扫码查看
采用铜互连的三维集成技术是提高微电子器件性能的一种很有前景的方法.然而,由于铜易扩散到硅电子器件中,导致其性能降低甚至失效,而钽(Ta)凭借稳定的化学性能常被作为阻挡层应用在工程中.为探究Cu/Ta体系的扩散行为,采用分子动力学方法,分别研究了温度和应变耦合作用下对Cu/Ta体系扩散的影响,通过对单晶结构和多晶结构的分析,厘清了两者扩散机理.在温度作用下,经过10 ns的保温,仅出现了 Ta原子向Cu原子内部扩散的现象,并且Ta原子向多晶Cu扩散的深度更深,达到1.5 nm.在应变作用下,体系中产生大量的晶体缺陷,多晶Cu内部出现的位错缠结、孪晶和晶界破裂加剧了扩散.随着应变的不断增加,Ta中位错密度增加,使Cu原子向Ta晶格内部扩散,扩散层厚度达到3.3nm.分子动力学模拟结果表明,Ta在温度作用下是一种非常有效的阻挡层,但在应变作用下其阻挡性能会逐渐消失,不再具备阻挡能力.
Molecular dynamics simulation of Cu/Ta interface diffusion behavior under high temperature and high strain
Three-dimensional integration technology of using copper interconnects is an effective approach to enhance the performance of microelectronic devices.However,the diffusion of copper atoms into silicon can significantly degrade their performance of the electronic devices,which even can cause failure.Chemically stable tantalum(Ta)is often employed as a barrier layer to enhance reliability of the electronic devices.To study the diffusion behavior of at the Cu/Ta interface,molecular dynamics simulations were carried out to investigate the effects of temperature and strain coupling.The diffusion mechanism at the Cu/Ta interface was analyzed in both single-crystalline and polycrystalline structures.At elevated temperatures,Ta atoms can penetrate into the Cu crystal lattice after 10 ns of annealing,where the penetration depth is greater for polycrystalline Cu and can reach up to 1.5 nm.Upon strain application,multiple defects were generated in the polycrystalline Cu,including dislocation tangles,twinning,and grain boundary ruptures,which leads to increase of dislocation density in Ta and thicker diffusion layer of 3.3 nm.The molecular dynamics simulation results shows that Ta is a highly effective barrier layer under high temperature conditions.However,its resistance of Cu diffusion gradually decreases and even disappear under strain.This study provides valuable insights into the reliability of Ta as a diffusion barrier in Cu interconnects,contributing to the development of more robust microelectronic devices.

molecular dynamicsinterface diffusionbarrier layertensileCu interconnectionCu/Ta

张磊洋、肖雯天、柳和生、李刚龙

展开 >

东华理工大学机械与电子工程学院,江西南昌 330013

华东交通大学机械与电子工程学院,江西南昌 330013

分子动力学 界面扩散 阻挡层 拉伸 Cu互连 Cu/Ta

2024

电子元件与材料
中国电子学会 中国电子元件行业协会 国营第715厂(成都宏明电子股份有限公司)

电子元件与材料

CSTPCD北大核心
影响因子:0.491
ISSN:1001-2028
年,卷(期):2024.43(10)