首页|基于CNN-LSTM锂离子电池荷电状态的预测

基于CNN-LSTM锂离子电池荷电状态的预测

扫码查看
在电池管理系统中,荷电状态(SOC)作为锂离子电池的关键参数,其估算的准确性对电池管理系统尤为重要.提出了基于卷积神经网络—长短期记忆神经网络(CNN-LSTM)网络的数据驱动方法,选取电池的电压、电流、温度作为输入,SOC作为输出.通过CNN-LSTM网络提取输入与输出之间的非线性相关性、空间性和时序性对SOC进行准确预测,同时采用组合法确定了网络参数.最后,通过MATLAB软件进行实验,实验结果表明,在低温下RMSE仍低于2%,具有较高的准确性和广阔的应用前景.
Prediction of State of Charge of Lithium Ion Battery Based on CNN-LSTM
In the battery management system,state of charge(SOC)is the key parameter of lithium-ion battery,and its estimation accuracy is particularly important for the battery management system.A data drive method based on CNN-LSTM network is proposed.The voltage,current and temperature of the battery are selected as the input and SOC is selected as the output.The CNN-LSTM network is used to extract the nonlinear correlation,spatial property and temporal property between input and output to accurately predict SOC.Meanwhile,the network parameters are determined by combination method.Finally,the experiment is carried out by MATLAB software.The experimental re-sults show that RMSE is still lower than 2%at low temperature,which has high accuracy and broad application prospect.

lithium-ion batterystate of chargeconvolutional neural networklong and short term neural networks

祁靓

展开 >

安徽理工大学电气与信息工程学院,安徽 淮南 232001

锂离子电池 荷电状态 卷积神经网络 长短期神经网络

2024

电子质量
中国电子质量管理协会 信产部五所

电子质量

影响因子:0.146
ISSN:1003-0107
年,卷(期):2024.(1)
  • 10