首页|基于栅格法的公交线路优化建模与强化学习

基于栅格法的公交线路优化建模与强化学习

扫码查看
公交线路的布线和优化工作一直是城市规划建设中极为重要的一部分,目前在上海市,这一工作下沉到区级建设和交通委员会实施,但该项工作的落实不仅耗费人力,还往往缺乏科学性,不能满足居民出行需求.针对这一现实问题,将公交线路解构成站点选址和线路生成两部分.首先,通过栅格法对区域地图和各类数据进行量化建模,使用MATLAB对各类影响公交站点分布的数据进行处理后生成最优公交站点分布;然后,使用Python通过遗传算法生成一组最优化公交路线,并使用强化学习优化算法运行速度,实现了区域内部的公交线路科学性布线优化工作,提高了相关工作的效率.
Optimisation Modelling and Reinforcement Learning of Bus Routes Based on Raster Approach
The wiring and optimisation of bus routes has always been an extremely important part of urban planning and construction,and at present,in Shanghai,this work is downgraded to the district-level construction and trans-portation committees to implement,but the implementation of this work is not only labor-intensive,but also often lacks scientific nature,and fails to meet the travel needs of residents.In response to this practical problem,the bus route is divided into the two parts of site selection and route generation.Firstly,the regional map and all kinds of data are quantitatively modeled by raster method,and the optimal distribution of bus stops is generated by processing all kinds of data affecting the distribution of bus stops with MATLAB.Then,a group of optimal bus routes is generated through genetic algorithm by using Python,and the running speed is optimized by using reinforcement learning algo-rithm.Thus,the scientific routing optimization of bus lines in the region is realized,and the efficiency of related work is improved.

raster method modellingreinforcement learningbus route optimisation:genetic algorithm

夏启元、苏鲍阳、俸志祥、任展鸿、蒋翠玲

展开 >

华东理工大学信息科学与工程学院,上海 200237

栅格法建模 强化学习 公交线路优化:遗传算法

上海市市级大学生创新创业训练计划

S202210251078

2024

电子质量
中国电子质量管理协会 信产部五所

电子质量

影响因子:0.146
ISSN:1003-0107
年,卷(期):2024.(3)
  • 8