首页|基于VMD-PE-MulitiBiLSTM的超短期风电功率预测

基于VMD-PE-MulitiBiLSTM的超短期风电功率预测

扫码查看
为减少超短期风电功率预测的误差,提出基于变分模态分解(variational mode decomposition,VMD)-排列熵(permutation entropy,PE)和多层双向长短时记忆(multilayer bidirectional long short-term memory,MultiBiLSTM)组合的超短期风电功率预测模型.首先,利用VMD分解算法将历史风电功率序列分解成若干个子模态分量,根据计算的PE值重构分解的子模态风电分量;然后,使用特征注意力(feature attention,FA)机制和深度残差级联网络(deep residual cascade network,DRCnet)构建MulitiBiLSTM预测模型,预测重构后的子序列;最后,重构子序列预测值,得到最终风电功率预测结果.使用贵州某风场的数据集对所提出的方法进行验证,并和其他预测模型进行对比.结果表明,使用VMD-PE-MultiBiLSTM模型能显著降低风电功率预测误差.
Ultra-Short-Term Prediction of Wind Power Based on VMD-PE-MulitiBiLSTM
In order to reduce the error of ultra-short-term wind power prediction, an ultra-short-term prediction model of wind power based on variational mode decomposition (VMD), permutation entropy (PE) and multilayer bidirectional long short-term memory (MultiBiLSTM) is proposed. Firstly, the historical wind power sequence is decomposed into several sub-modal components using VMD decomposition algorithm, and the sub-modal wind power components are reconstructed according to the calculated PE value. Then, the feature attention (FA) mechanism and deep residual cascade network (DRCnet) are used to construct a MulitiBiLSTM prediction model to predict the reconstructed subsequences. Finally, the predicted value of the sub-sequence is reconstructed to obtain the final prediction result of wind power. The datum set of a wind field in Guizhou province is used to verify the proposed method and compare it with other prediction models. The results show that using VMD-PE-MultiBiLSTM model can significantly reduce the prediction error of wind power.

ultra-short-term prediction of wind powervariational mode decomposition (VMD)permutation entropy (PE)multilayer bidirectional long short-term memory (MultiBiLSTM)

陈烨烨、李瑶、李捍东

展开 >

贵州大学电气工程学院,贵州省 贵阳市 550025

国网四川电力公司天府新区供电公司,四川省 成都市 610213

风电功率超短期预测 变分模态分解(VMD) 排列熵 (PE) 多层双向长短时记忆(MultiBiLSTM)

国家自然科学基金

52167007

2024

分布式能源
中国大唐集团科学技术研究院有限公司,清华大学出版社有限公司

分布式能源

CSTPCD
ISSN:2096-2185
年,卷(期):2024.9(2)
  • 22