首页|考虑负荷不确定性的配电网分层协调控制策略

考虑负荷不确定性的配电网分层协调控制策略

扫码查看
忽视配电网运行的负荷特点,会导致蓄电池状态以及功率交换情况的优化不足.为了解决配电网节点拓扑和负荷不确定性的问题,提出了一种考虑负荷不确定性的配电网分层协调控制方法.分析了包括负荷节点、变压器、断路器、隔离开关等节点在内的配电网拓扑结构,分别计算了并网模态、孤岛模态下的能量关系,建立源网荷储分层协调控制模型,并使用拉丁超立方抽样方法生成不确定性的场景,引入了惯性权重、学习因子等参数改进粒子群算法,设计多目标分层粒子群算法的调控流程,实现配电网源网荷储分层协调控制.实验结果表明:应用该方法后,蓄电池的能量状态更好,交换功率更高;分层协调控制效果较佳,并可以根据实际需求进行配电网负荷状态自适应调整.
Layered Coordination Control of Distribution Network Considering Load Uncertainty
Ignoring the load characteristics of distribution network operation will lead to insufficient optimization of battery state and power exchange. In order to solve the problems of distribution network node topology and load uncertainty, a hierarchical coordination control method for distribution network considering load uncertainty is proposed. The topological structure of distribution network including load node, transformer, circuit breaker, isolation switch and other nodes is analyzed, and the energy relationship under grid-connected mode and island mode is calculated respectively, and the hierarchical coordination control model of source, network, load and storage is established. In addition, Atin hypercube sampling method is used to generate uncertain scenes, and parameters such as inertia weight and learning factor are introduced to improve the particle swarm optimization algorithm, and the regulation process of multi-objective layered particle swarm optimization is designed to realize the layered coordinated control of load and storage in the source network of the distribution network. The experimental results show that the energy state of the battery is better and the exchange power is higher after the method is applied. The effect of hierarchical coordination control is better, and the load state of distribution network can be adjusted adaptively according to the actual demand.

node topologyload uncertaintydistribution networkhierarchical coordination controlparticle swarm optimization algorithm

王伟、孙夏、郭俊、姜伟、孙哲彬、刘鹏宣

展开 >

内蒙古电力经济技术研究院,内蒙古自治区 呼和浩特市 010020

节点拓扑 负荷不确定性 配电网 分层协调控制 粒子群算法

2024

分布式能源
中国大唐集团科学技术研究院有限公司,清华大学出版社有限公司

分布式能源

CSTPCD
ISSN:2096-2185
年,卷(期):2024.9(2)
  • 34