首页|基于图神经网络的光伏组串故障诊断

基于图神经网络的光伏组串故障诊断

扫码查看
光伏组串运行状态分析是建模和故障诊断的基础,而故障诊断是保障光伏系统安全经济运行的重要手段.提出基于图神经网络的邻近光伏组串故障诊断模型,通过比较历史窗口期内光伏组串的电流和电压数据来监测光伏系统的运行状态.该方法无需新增传感器设备,电流和电压数据直接通过逆变器获得.选取某光伏电站6组典型光伏组串,仿真模拟了常见故障运行状态和正常运行状态,并结合仿真数据对图神经网络模型进行了训练和测试.测试结果显示,尽管6个典型组串在光伏组件数量、方向、位置等方面存在较大差异,训练好的图神经网络模型仍然可对5种常见故障进行实时监测和诊断.对比测试的结果显示:在没有天气数据的情况下,图神经网络模型的诊断准确率高于当前精度较高的两种常见诊断方法;此外,图神经网络模型可推广到未经训练的光伏组串,并且能在多个光伏组串同时发生故障时保持较高的诊断准确率.
Fault Diagnosis of Photovoltaic String Based on Graph Neural Network
The analysis of photovoltaic string operation status is the foundation of modeling and fault diagnosis,and fault diagnosis is an important means to ensure the safe and economic operation of photovoltaic systems.This article proposes a fault diagnosis model for adjacent photovoltaic strings based on graph neural networks,which monitors the operating status of photovoltaic systems by comparing the current and voltage data of photovoltaic strings during the historical window period.This method does not require the addition of new sensor equipment,and current and voltage data are directly obtained through the inverter.Six typical photovoltaic strings are selected for a certain photovoltaic power station,and common fault operation states and normal operation states are simulated.The graph neural network model is trained and tested based on simulation data.The test results show that although there are significant differences in the number,direction,and position of photovoltaic modules among the six typical strings,the trained graph neural network model can monitor and diagnose five common faults in real time.The results of comparative testing show that in the absence of weather data,the diagnostic accuracy of the graph neural network model is higher than the two commonly used diagnostic methods with higher accuracy.In addition,the graph neural network model can be extended to untrained photovoltaic strings and can maintain high diagnostic accuracy when multiple photovoltaic strings fail simultaneously.

photovoltaic stringfault diagnosismachine learninggraph neural networkfeature selection

朱壮华、张卫平、王文彦、史学峰、马亚勇、刘志宏

展开 >

华能山西综合能源有限责任公司,山西省 太原市 030032

光伏组串 故障诊断 机器学习 图神经网络 特征选取

中国华能集团有限公司山西分公司科技项目

HNK T20-H2022092140

2024

分布式能源
中国大唐集团科学技术研究院有限公司,清华大学出版社有限公司

分布式能源

CSTPCD
ISSN:2096-2185
年,卷(期):2024.9(4)