首页|多通道多尺度的注意力机制单幅图像去雨方法

多通道多尺度的注意力机制单幅图像去雨方法

扫码查看
为了去除受雨天天气影响而出现在图像中的雨纹和雨线,本文提出了一种基于多通道多尺度的注意力机制单幅图像去除雨纹和雨线的方法,通过多尺度特征提取与网络融合,提取多尺度卷积神经网络不同通道的雨纹和雨线特征。首先利用双边滤波进行图像分解;然后对低频部分进行多尺度的特征提取与融合,并且使用区域注意力进一步提取图像的特征信息,同时对高频部分利用多尺度特征提取的卷积神经网络进行特征学习;最后将2部分相加,得到了去除雨纹和雨线更彻底的清晰图像,在合成数据集和真实数据集上分别与其他去雨方法进行对比分析。分析结果表明:本文去除雨纹和雨线后得到的图像更加清晰,并且图像的部分区域细节丢失更少,本文方法提升了去雨后的图像质量,从而改善了该方法在图像处理、计算机视觉和机器学习等领域的应用效果和性能。
Multi-channel and Multi-scale Attention Mechanism Single Image Rain Removal Method
In order to remove rain streaks and rain lines that appear in images affected by rainy weather,this paper proposes a single image removal method based on a multi-channel and multi-scale attention mechanism.Through multi-scale feature extraction and network fusion,the rain streaks and rain line features of different channels in a multi-scale convolutional neural network are extracted.Firstly,bilateral filtering is used for image decomposition.Then,multi-scale feature extraction and fusion are performed on the low-frequency part,and regional attention is used to further extract the feature information of the image.At the same time,multi-scale feature extraction convolutional neural networks are used for feature learning on the high-frequency part.Finally,the two parts are added together to obtain a clearer image with more thorough removal of rain streaks and rain lines.Compared among other rain removal methods on the synthetic dataset and the real dataset,the experimental results show that the image obtained in this paper after removing rain streaks and rain lines is clearer,and some areas of the image have less loss of details,improved image quality after rain removal,thereby enhancing application effects and performance in fields such as image processing,computer vision,and machine learning.

image rain removalrain streaks and rain linesmulti-scale feature extractiondilated convolutionregional attention

吴子凡、罗维平、樊飞

展开 >

武汉纺织大学机械工程与自动化学院,湖北武汉 430200

湖北省数字化纺织装备重点实验室,湖北武汉 430200

图像去雨 雨纹和雨线 多尺度特征提取 空洞卷积 区域注意力

湖北省数字化纺织装备重点实验室开放基金

DTL2022001

2024

复旦学报(自然科学版)
复旦大学

复旦学报(自然科学版)

CSTPCD北大核心
影响因子:0.388
ISSN:0427-7104
年,卷(期):2024.63(4)