首页|Painlevé变换法构造一类广义非线性偏微分方程的扭波解

Painlevé变换法构造一类广义非线性偏微分方程的扭波解

扫码查看
关于广义的Benney方程和五阶KdV方程的精确解已有众多学者进行了研究,但大多侧重于寻找可积微分方程的亚纯解。本文基于Painlevé变换法和多项式原理,直观地构造了不具有亚纯解结构的非线性不可积微分方程的精确解,并证明了该解是一种扭波解。进一步地,阐明了此方法可用于寻找其他更高阶的非线性不可积微分方程的扭波解。
Kink Solutions for a Class of Generalized Nonlinear Partial Differential Equations Constructed by Painlevé Transformation Method
Many scholars have studied the exact solutions of the generalized Benney equation and the generalized fifth order KdV equation,but most of them focus on finding meromorphic solutions of integrable differential equations.In this paper,by using Painlevé transformation method and polynomial principle,exact solutions without meromorphic solution structure of the above nonlinear integrable PDEs are constructed,and it is proved that the solutions are kink solutions.Furthermore,it is explained that this method can be extended to find kink solutions for other higher-order nonlinear nonintegrable differential equations.

Benney equationfifth order KdV equationPainlevé transformation methodkink solution

卢霖、张超、郭力嘉

展开 >

湖南第一师范学院数学与统计学院,湖南长沙 410205

湖南科技大学湖南省岩土工程稳定控制与健康监测重点实验室,湖南湘潭 411201

西南大学数学与统计学院,重庆 400715

Benney方程 五阶KdV方程 Painlevé变换法 扭波解

2024

复旦学报(自然科学版)
复旦大学

复旦学报(自然科学版)

CSTPCD北大核心
影响因子:0.388
ISSN:0427-7104
年,卷(期):2024.63(6)