首页|基于多特征表示的无监督机器异常声音检测

基于多特征表示的无监督机器异常声音检测

扫码查看
在工业生产中,利用声音来检测机器故障信息是一种非常有效和实用的手段。然而实际应用中异常声音很少,只能提供正常的声音数据。所以需要提取能表示机器关键物理特性的特征。本文提出了一种基于多特征表示的无监督异常声音检测方法。先提取频谱相干特征以衡量不同频移间的相关性,用对数Mel谱特征来评估信号在Mel频率尺度上的整体能量水平,并对二者进行融合表征机器的关键属性。接着,通过辅助分类任务进行训练并基于K最邻近算法计算嵌入向量的余弦相似度求得异常得分。在DCASE 2022 Challenge Task 2数据集上的实验结果表明,所提出的基于多特征表示的检测系统与基线系统相比性能有显著提升。
Unsupervised Machine Abnormal Sound Detection Based on Multi-feature Representation
In industrial production,utilizing sound to detect machine fault information is a highly effective and practical means.However,in actual applications,abnormal sound occurrences are rare,and only normal sound data is available.Therefore,it is necessary to extract features that can represent the key physical characteristics of the machine.This paper proposes an unsupervised abnormal sound detection method based on multi-feature representation.Spectral coherence features are extracted to measure the correlation between different frequency-shifted versions,and log-Mel spectral features are extracted to assess the overall energy level of the signal on a Mel-frequency scale,and these features are fused to represent the critical attributes of the machine.Subsequently,training is conducted through auxiliary classification tasks,and the anomaly scores are calculated based on the cosine similarity of the embedding vectors using the K-Nearest Neighbor algorithm.Experimental results on the DCASE 2022 Challenge Task 2 dataset demonstrate a significant improvement in the performance of the proposed multi-feature representation-based detection system compared to the baseline system.

unsupervisedfeature fusioncyclic spectral coherencedeep learningabnormal sound detection

彭焘、肖遥、冯时、朱晨阳、李圣辰、邵曦

展开 >

南京邮电大学通信与信息工程学院,江苏南京 210003

西交利物浦大学先进工程学院,江苏苏州 215123

无监督 特征融合 循环谱相干 深度学习 异常声音检测

2024

复旦学报(自然科学版)
复旦大学

复旦学报(自然科学版)

CSTPCD北大核心
影响因子:0.388
ISSN:0427-7104
年,卷(期):2024.63(6)