首页|绳驱式双关节脊柱四足机器人的结构设计及其奔跃控制方法的研究

绳驱式双关节脊柱四足机器人的结构设计及其奔跃控制方法的研究

扫码查看
脊柱关节在四足动物高速运动中发挥着重要作用,为分析脊柱运动对四足机器人运动的影响,本文从机器人仿生学结构设计、奔跃控制方法和脊柱影响规律3个层面进行研究。首先,基于绳驱原理设计了双关节脊柱和三段式柔性腿部,整机结构配置紧凑且符合猎豹生理学特征。然后,依据生物步态构建基于时间的有限状态机,建立机器人奔跃步态下的单刚体动力学模型,并分别针对脊柱和腿部提出相应控制方法,其中对于腿部的控制融合了周期冲量规划和模型预测控制(MPC)。在结构设计和控制方法的基础上,分析脊柱运动对奔跃运动的影响,并创新性地提出针对冲量的脊柱贡献度公式。最后,通过仿真运算对奔跃控制的有效性和脊柱的积极贡献进行验证,对比结果表明:脊柱运动的参与能够利用较小前后水平力实现相近冲量值,且机器人速度跟踪性能和姿态控制稳定性均有所改善。
Research on the Structure Design Based on Cable Driven and Bounding Control Method of a Quadruped Robot with Double-Joint Spine
Spine joints play an important role in the high-speed locomotion of quadrupeds.In order to study the influence of spine movement on the motion of the quadruped robot,this paper conducts research including bionic structure design,bounding control method and spine influence law.Firstly,a double-jointed spine and three-segment flexible leg are designed based on the cable driven.The whole structure is compact and consistent with the physiological characteristic of the cheetah.Secondly,a time-based finite state machine is established based on the biological gait,a single rigid body dynamic model of robot for the bounding gait is constructed and corresponding control methods are proposed for the spine and leg respectively.The control method for leg is integrated with impulse planning and model predictive control(MPC).Thirdly,based on the structure design and control methods,the influence of spine motion on bounding movement is analyzed,and the contribution formula of spine for impulse is innovatively proposed.Finally,the effectiveness of bounding control and positive contribution of spine are verified via simulation.The results show that the participation of the spine movement can achieve similar impulse using smaller front and hind horizontal forces,and the speed tracking performance and orientation control stability are improved.

quadruped robotdouble-joint spinecable drivenbounding gaitmodel predictive control

马甲辰、田春旭、李禄权、张丹

展开 >

复旦大学工程与应用技术研究院智能机器人研究院,上海 200433

香港理工大学机械工程学系,香港九龙红磡 999077

四足机器人 双关节脊柱 绳驱 奔跃步态 模型预测控制

2024

复旦学报(自然科学版)
复旦大学

复旦学报(自然科学版)

CSTPCD北大核心
影响因子:0.388
ISSN:0427-7104
年,卷(期):2024.63(6)