首页|深度学习技术在超燃冲压发动机流场分析中应用研究

深度学习技术在超燃冲压发动机流场分析中应用研究

扫码查看
基于深度学习的流场重建方法是检测超燃冲压发动机燃烧室内波系结构演化的有效手段之一,对流场的主流动控制具有重要意义.为准确获取复杂场景下的激波结构,提出一种基于深度学习的流场波系结构重建及分割算法.该算法基于卷积强大的特征提取能力,首先利用压力数据,通过流场重建模型直接生成流场纹影图像;然后,利用超分辨率重建算法提升图像的分辨率;最后,利用分割模型提取流场中的波系结构.该模型在马赫数为2.5 的直连超音速脉冲燃烧风洞中进行的不同当量比氢燃料超燃冲压发动机试验中构建的数据集上进行训练和测试.试验结果表明,所提出模型的流场重建性能及激波分割准确率均取得最佳结果.
Application research of deep learning technology in flow field analysis of scramjet engines
The flow field reconstruction method based on deep learning is an effective means for detecting the evolution of wave structures inside the combustion chamber of scramjet engines,and it holds significant importance for controlling the main flow dynamics of the flow field.To accurately capture shock wave structures in complex sce-narios,a deep learning-based algorithm for reconstructing and segmenting flow field wave structures is proposed.Leveraging the powerful feature extraction capabilities of convolution,the algorithm first utilizes pressure data to di-rectly generate flow field shadow images through a flow field reconstruction model.Subsequently,a super-resolu-tion reconstruction algorithm is employed to enhance the image resolution.Finally,a segmentation model is used to extract the wave structures in the flow field.The model is trained and tested on a dataset constructed from experi-ments with a direct-connected supersonic pulse combustion wind tunnel at a Mach number of 2.5,using different equivalence ratios of hydrogen fuel in a scramjet engine.Experimental results demonstrate that the proposed model achieves optimal performance in flow field reconstruction and accurate segmentation of shock waves.

deep learningflow fieldwave structuresegmentation algorithm

田野、邓雪、郭明明、任虎

展开 >

中国空气动力研究与发展中心,四川 绵阳 621050

深度学习 流场 波系结构 分割算法

2024

防护工程
总参谋部工程兵科研三所

防护工程

影响因子:0.2
ISSN:
年,卷(期):2024.46(2)
  • 29