首页|复杂地形风电场微观选址优化算法研究

复杂地形风电场微观选址优化算法研究

扫码查看
我国拥有丰富、分布广泛的风能资源,其中复杂地形的风能开发正成为新的焦点.在风能开发中微观选址极为重要.由于传统风电场微观选址优化在复杂地形中效率低下,难以充分利用风资源,本文提出两种更高效的优化方法.其一,采用灰狼优化算法对风电场选址进行优化,优化主要以单个风力机容量系数为个体,总发电量的提高为目标,多优化个体共同构成电场整体排布方案.这种针对复杂地形下风电场微观选址优化的方式,能显著提升优化效率,有效实现选址优化目的.其二,采用作图法,分析风电场内特定高度的容量系数和风向分布,提出多种排布方案,基于发电量最大化原则选定方案实现优化,这种方法直接锁定最优结果,减少计算资源消耗.
Optimization Algorithm for Micro Site Selection of Complex Terrain Wind Farm
China possesses abundant and widely distributed wind energy resources,with the development of wind energy in complex terrains becoming increasingly significant.In the development of wind energy,micro-siting is of critical importance.Due to the low efficiency of traditional micro-siting optimization methods for wind farms in complex terrains,and the challenges in fully harnessing wind resources,this paper introduces two more effective optimization approaches.Firstly,the Grey Wolf Optimization(GWO)algorithm is applied to optimize wind farm siting.This method focuses on optimizing individual wind turbines based on their capacity factor,with the objective of increasing overall electricity generation.The optimized wind turbines collectively form the complete layout of the wind farm.Specifically tailored for micro-siting optimization in complex terrains,this method significantly enhances optimization efficiency and effectively achieves its objectives.Secondly,a finite scheme optimization is utilized.This involves analyzing the capacity factor and wind direction distributions at certain heights within the wind farm,and proposing various layout schemes.The optimal scheme is selected based on the principle of maximizing electricity generation.This approach directly identifies the best outcome,thereby reducing computational resource expenditure.

Complex TerrainMicro Site SelectionGrey Wolf Optimization AlgorithmLimited OptimizationCapacity Factor

王晓理、杨凤志、张棚、范志强

展开 >

中国船舶重工集团海装风电股份有限公司

华北电力大学能源动力与机械工程学院

北京国遥新天地信息技术股份有限公司

复杂地形 微观选址 灰狼优化算法 有限寻优 容量系数

国家重点研发计划

2018YFB1501100

2024

风机技术
沈阳豉风机研究所(有限公司)

风机技术

影响因子:0.643
ISSN:1006-8155
年,卷(期):2024.66(1)
  • 13