首页|改进CNN的风力机叶片故障诊断方法

改进CNN的风力机叶片故障诊断方法

扫码查看
针对图像分辨率低的风力机叶片图像会导致故障诊断过程中精度和速度降低等问题,提出了一种基于小波变换、深度可分离卷积和卷积块注意力机制模块的轻量级改进VGG-19模型;使用DB4小波和基于形态学的增强技术来提高风力机叶片图像的质量,然后将VGG-19中的传统卷积层替换为深度可分离卷积层,以减少网络参数的数量并提高训练效率,最后引入卷积注意力机制模块(Convolutional Block Attention Module,CBAM)来提高风力机叶片故障诊断的准确性;研究结果表明:所提模型的准确率为93.91%,与其他传统卷积神经网络(Convolutional Neural Networks,CNN)模型LeNet、AlexNet、GoogleNet、ResNet-50和VGG-19相比分别提高了15.06%、8.57%、3.10%、-1.13%和7.13%;测试时间为每幅图像0.046秒,较传统CNN模型每幅图像分别减少了-0.004秒、-0.002秒、0.006秒、0.015秒和0.010秒的检测时间;该模型结构轻巧,相比于其他传统CNN具有更高的准确性和更快的检测速度.
A Fault Diagnosis Method of Wind Turbine Blades Based on Improved CNN
A lightweight-improved VGG-19 model based on wavelet transform,depth-separable convolution and convolutional block attention mechanism module is proposed,aiming at the problem that wind turbine blade images with low image resolution can lead to reduced accuracy and speed in the fault diagnosis process;DB4 wavelet and morphology-based enhancement techniques are used to improve the quality of the wind turbine blade images;then the traditional convolutional layer in VGG-19 is replaced with a depth-separable convolutional layer to reduce the number of network parameters and improve the training efficiency;and finally the Convolutional Block Attention Module(CBAM)is introduced to improve the fault diagnosis of wind turbine blades.The results show that the accuracy of the proposed model is 93.91%,the main traditional Convolutional Neural Networks(CNN)models are LeNet,AlexNet,GoogleNet,ResNet-50 and VGG-19,and the proposed model improves over them by 15.06%,8.57%,3.10%,-1.13%and 7.13%;the test time is 0.046 seconds per image,which is a reduction of-0.004,-0.002,0.006,0.015,and 0.010 seconds per image,respectively;the model is lightweight in structure and has higher accuracy and faster detection speed compared to other traditional CNNs.

Fault DiagnosisWind Turbine BladesFuzzy Image DetectionDeep LearningVGG-19Attention Mechanism

黄灿冰、熊妮、吴伟、刘诗剑、张巧、杨锡运

展开 >

中电投喜德电力有限公司

国网四川省电力公司天府新区供电公司

国家电投集团四川电力有限公司

国家电投集团西南能源研究院有限公司

华北电力大学控制与计算机工程学院

展开 >

故障检测 风力机叶片 模糊图像检测 深度学习 VGG-19 注意力机制

2024

风机技术
沈阳豉风机研究所(有限公司)

风机技术

影响因子:0.643
ISSN:1006-8155
年,卷(期):2024.66(2)
  • 18