首页|基于RetinaNet的PCB銲点数字射线缺陷图像检测

基于RetinaNet的PCB銲点数字射线缺陷图像检测

扫码查看
为了避免焊接缺陷引起的故障和质量问题,PCB焊点检测已经成为电子产品生产制造中的重要环节.使用基于深度学习的数字射线无损检测来检查PCB电路板内部焊点缺陷,可以在提高生产效率的同时减轻工人的劳动压力.本文建立了 3种常见的数字射线下PCB焊点缺陷图像数据集,基于Reti-naNet 搭建了 自动检测网络模型.经过训练测试,该模型对于缺陷图片的平均检测准确率达到了 92.7%,能够有效地提高X射线下PCB焊点缺陷检测的性能和效率.
Automatic Detection of Weld Defects in X-Ray Image Based on RetinaNet
To prevent failures and quality issues caused by welding defects,PCB solder joint inspection has become a critical step in the manufacturing of electronic products.The application of deep learning-based digital X-ray non-destructive testing to examine internal solder joint defects within PCB circuit boards can increase production efficiency while reducing the labor pressure on workers.Three common digital X-ray datasets of PCB solder joint defects were established and an automated detection network model based on RetinaNet was constructed.After training and testing,the model achieved an average detec-tion accuracy of 92.7%for defect images.Experimental results demonstrate that the proposed model effec-tively enhanced the performance and efficiency of PCB solder joint defect detection under X-ray inspection.

PCB defectsnon-destructive testingdeep learningRetinaNet

严豪、张宏、唐顺、高丰誉

展开 >

福建技术师范学院电子与机械工程学院,福建福清 350300

福建技术师范学院无损检测技术福建省高校重点实验室,福建福清 350300

PCB缺陷 无损检测 深度学习 RetinaNet

国家自然科学基金国家自然科学基金

6207112361601125

2024

福建技术师范学院学报
福建师大福清分校

福建技术师范学院学报

影响因子:0.272
ISSN:1008-3421
年,卷(期):2024.42(2)
  • 15