首页|改进YOLOv5s的石化火灾巡检机器人检测算法

改进YOLOv5s的石化火灾巡检机器人检测算法

扫码查看
为解决石化火灾检测算法模型复杂、实时性差、准确率不高和难以部署的问题,提出一种基于改进YOLOv5s网络模型的石化火灾图像识别方法,通过主干网络引入注意力模块CBAM,提高模型对特征的学习能力;通过添加大尺度Detect层来改进多尺度检测机制,增强模型对小目标的识别能力.测试结果表明:改进的YOLOv5s网络模型相比原始模型在精确率、召回率和平均精度均值(mAP)指标上均有提升.改进模型的mAP为98.8%,帧率达55.23 f/s,对小目标的识别效果更好,能方便部署于石化巡检机器人.
Petrochemical Fire Inspection Robot Detection Algorithm Based on Improved YOLOv5s
To address the complexities,poor real-time performance,and low accuracy of the petrochemi-cal fire detection algorithm,as well as its challenges in deployment on petrochemical inspection robots,we optimized the YOLOV5s network model.We incorporated the CBAM attention module into the back-bone network to enhance the model's ability to extract and learn image features.Simultaneously,by adding a large-scale detection layer,we improved the accuracy of the model in identifying small objects in complex scenes.Experimental results on the test dataset demonstrate that the improved YOLOV5s net-work model outperforms the original model in precision,recall,and mean Average Precision(mAP).The improved model achieves a mAP of 98.8%and a frame rate of 55.23 fps,showing better recognition per-formance for small targets and enabling convenient deployment on petrochemical inspection robots.

petrochemical fireimage recogritionYOLOv5s network modelCBAM attention mecha-nismmulti-scale detection

林学伟、张健

展开 >

福建技术师范学院电子与机械工程学院,福建福清 350300

福建省特种智能装备安全与测控重点实验室"福建省特种设备检验研究院",福建 福州 350008

石化火灾 图像识别 YOLOv5s网络模型 CBAM注意力机制 多尺度检测

2024

福建技术师范学院学报
福建师大福清分校

福建技术师范学院学报

影响因子:0.272
ISSN:1008-3421
年,卷(期):2024.42(5)