首页|改进YOLOv8的燃气管道智能视频监控系统设计与实现

改进YOLOv8的燃气管道智能视频监控系统设计与实现

扫码查看
为了解决燃气管道沿线监控视频中普遍存在的背景复杂、多样的小目标和多尺度目标识别能力不足的问题,提出了基于CBAM注意力机制和4倍下采样检测头的YOLOv8改进算法,并实现了基于该改进算法的智能视频监控系统.实验结果表明,改进的算法精确度、召回率和均值平均精确度mAP@0.5分别达到了 80.2%、72.8%和80.2%的性能指标,相比原始的YOLOv8s算法分别提高了 1.9%、3.8%和1.6%.以某市燃气管道安全监管为研究案例,验证了该改进算法系统在燃气管道安全监控中的效率、准确率和时效性,为实现燃气管道安全监管的常态化、规范化和精细化,提供了一定的技术支持.
Implementation of Intelligent Video Monitoring System for Gas Pipelines Based on Improved YOLOv8
An improved YOLOv8 algorithm,integrating the CBAM attention mechanism and a 4x down-sampling detection head,is proposed to tackle the prevalent challenge of limited capability in identifying intricate and diverse small and multi-scale targets in surveillance videos along gas pipelines.Generally speaking,the experimental results show that the improved algorithm has achieved respective performance index of 80.2%for accuracy,72.8%for recall rate,and 80.2%for mean average accuracy mAP@0.5,which are 1.9%,3.8%,and 1.6%higher than the original YOLOv8s algorithm respectively.To be spe-cific,the efficiency,accuracy,and timeliness of this system in monitoring the safety of gas pipelines have been validated through a case study on safety supervision of gas pipelines in a specific city,which serves as a certain technical basis for achieving the normalization,standardization and refinement of gas pipeline safety supervision.

gas pipelinesvideo monitoringYOLOv8object detection

魏松林、李伟权、唐凯

展开 >

厦门海洋职业技术学院信息工程学院,福建厦门 361100

集美大学海洋信息工程学院,福建厦门 361021

厦门唯识筋斗云科技有限公司,福建厦门 361115

燃气管道 视频监控 YOLOv8 目标检测

2024

福建技术师范学院学报
福建师大福清分校

福建技术师范学院学报

影响因子:0.272
ISSN:1008-3421
年,卷(期):2024.42(5)