首页|改进微粒群算法的六自由度机械臂逆运动学研究

改进微粒群算法的六自由度机械臂逆运动学研究

扫码查看
改进PSO算法流程,将总迭代次数分为子迭代,优化算法的适应度函数,并且使用球形腕方法替代DH建模法.通过分析实例机械臂的逆运动学呈现了所提出的改进算法在减少计算时间方面的效果.所提出的算法与3种微粒群算法(PSO)的变体对PUMA 560和ABB IRB120机械臂工作空间中随机选择的20个位置和方向数据进行比较仿真研究,并使用威尔科克逊(Wilcoxon)非参数统计检验法对算法进行检验.通过计算时间、定位精度和求解率来分析仿真结果,可以得出本文的改进微粒群算法比其他PSO变体更可行.
Research on the Inverse Kinematics of a Six-Degree-of-Freedom Robotic Arm Based on Improved Particle Swarm Optimization Algorithm
This paper improves the process of the PSO algorithm by dividing the total number of iterations into sub-iterations,optimizing the fitness function of the algorithm,and adopting the spherical wrist ap-proach to substitute for the DH modeling method.Firstly,by analyzing the inverse kinematics of an exam-ple robotic arm,the effectiveness of the proposed improved algorithm in reducing computation time is demonstrated.Secondly,the algorithm proposed in this paper is compared with three variants of the PSO,and a comparative simulation study is conducted on 20 randomly selected positions and directions in the workspace of PUMA560 and ABB IRB120 robotic arm.Thirdly,the Wilcoxon non-parametric statistical test is employed to compare the algorithms.Lastly,as far as analysis of the simulation results by consider-ing calculation time,positioning accuracy and solution rate is concerned,it can be seen that the improved PSO algorithm in this paper is more feasible than other PSO variants.

inverse kinematicsindustrial robotsSix-degree-of-freedom robotic armtime efficiency calculationparticle swarm optimization(PSO)algorithm

施君泽、梁泉

展开 >

福建幼儿师范高等专科学校信息科学学院,福建 福州 350007

福建理工大学计算机科学与数学学院,福建 福州 350108

逆运动学 工业机器人 六自由度机械臂 时效计算 微粒群算法

2024

福建技术师范学院学报
福建师大福清分校

福建技术师范学院学报

影响因子:0.272
ISSN:1008-3421
年,卷(期):2024.42(5)