首页|基于CT和临床特征构建的机器学习模型在局部进展期胃癌隐匿性腹膜转移中的预测价值

基于CT和临床特征构建的机器学习模型在局部进展期胃癌隐匿性腹膜转移中的预测价值

扫码查看
目的 利用CT多模态参数构建并评估机器学习模型,预测局部进展期胃癌(LAGC)患者的隐匿性腹膜转移(OPM)状态.方法 收集310例LAGC患者的临床资料和影像数据,将患者按7∶3的比例随机分为训练组(217例,其中OPM阴性201例,OPM阳性16例)和验证组(93例,其中OPM阴性84例,OPM阳性9例),构建3个模型,即影像评分模型、临床特征模型和联合模型.采用受试者工作特征曲线(ROC)下面积(AUC)进行模型评价,并采用DeLong检验和综合判别改善指数(IDI)评估模型的泛化性能和诊断效能.结果 通过多因素logistic回归分析,选取显著特征,包括几何特征GeoFd2和灰度直方图特征Mean,计算影像评分(Rad-score).临床特征模型纳入了血清肿瘤标志物糖类抗原(CA)125、胃镜下肿瘤部位和CT-N分期.联合模型结合了影像评分和上述临床特征,基于爬山法贝叶斯网络(BN)进行构建.训练组和验证组中联合模型显示出更高的预测性能,优于单独的影像评分模型(IDI:0.237和0.200,P<0.05)和临床特征模型(IDI:0.177和0.278,P<0.05).结论 联合胃镜下肿瘤部位、CA125和影像特征的BN联合模型,可预测LAGC患者的OPM状态,具有较高的预测准确性和可靠性.
Predictive Value of a Machine Learning Model Based on CT and Clinical Features in Occult Peritoneal Metastasis of Locally Advanced Gastric Cancer
Objective To construct and evaluate a machine learning model using CT multimodal parameters to predict the status of occult peritoneal metastasis(OPM)in patients with locally advanced gastric cancer(LAGC).Methods Clinical information and imaging data from 310 LAGC patients were collected and randomly divided into a training group(217 cases,of which 201 were OPM-negative and 16 were OPM-positive)and a validation group(93 cases,of which 84 were OPM-negative and 9 were OPM-positive)in a 7∶3 ratio.Three models were constructed:a radiomics score model,a clinical fea-tures model,and a combined model.Model performance was evaluated using the area under the receiver operating characteristic curve(AUC).DeLong test and the integrated discriminant improvement index(IDI)were used to assess model generalization performance and diagnostic efficacy.Results Significant features,including geometric feature GeoFd2 and gray-level histogram feature Mean,were identified through multivariate logistic regression analysis to calculate the radiomics score(Rad-score).The clinical features model incorporated the serum tumor marker carbohydrate antigen(CA125),endoscopic tumor site and CT-N staging.The combined model integrated the radiomics score and the clinical features and was constructed using the Bayesian Network(BN)algorithm.In the training and validation groups,the com-bined model demonstrated superior predictive performance,significantly outperforming the radiomics score model(IDI:0.237 and 0.200,P<0.05)and the clinical features model(IDI:0.177 and 0.278,P<0.05)alone.Conclusion The joint BN model combining endoscopic tumor site,CA125,and imaging features can predict OPM status in LAGC patients with high predictive accuracy and reliability.

gastric canceroccult peritoneal metastasisradiomicsBayesian network

谢建高、易鑫、杨芬霞、邹添秀、林维文、王莉莉

展开 >

福建医科大学附属协和医院影像科,福州 350001

胃癌 隐匿性腹膜转移 影像组学 贝叶斯网络

2024

福建医科大学学报
福建医科大学

福建医科大学学报

CSTPCD
影响因子:0.442
ISSN:1672-4194
年,卷(期):2024.58(5)