首页|人工智能生成内容著作权合法性的制度难题及其解决路径

人工智能生成内容著作权合法性的制度难题及其解决路径

扫码查看
人工智能内容生成机制涵盖研发阶段的数据获取和后续利用阶段的生成内容应用,前一阶段主要面临获取数据的著作权合法授权问题,后一阶段则主要面临生成内容的著作权属性判断、归属及侵权责任承担等问题。现有规范分析框架对两个阶段所面临的主要问题都存在规则局部不适配的情况,究其根源在于现有规范设计不能满足人工智能发展所带来的产业保障需求,对已经做出调整的发展人工智能的产业政策无法进行有效回应。由技术推动带来的人工智能内容生成机制的变革,直接冲击着现有著作权制度对作品表现形式和"思想—表达二分"的底层逻辑认知,同时,还面临事前授权的财产规则和海量资源学习模式需求不符的窘境、机器学习内容获取全阶段的著作权侵权风险以及由数据保护利益的多样性和复杂性导致的要求著作权合规等问题。面对这些问题,不能单一化打补丁式地进行规则设计,而应该综合性地解决体系性认知问题,在稳固"思想—表达二分法"的基础原则上,可尝试通过将署名和其他著作权进行分离的制度设计以贯彻诚实信用原则保障数据来源真实,通过合法购买与合同约定风险承担、打开人工智能预训练阶段数据获取的著作权合理使用闸口,并借助避风港规则实现责任豁免、集体管理组织集中授权、建立开放授权的数据资源等多元化方案解决现实世界与技术演变之间的"发展之问",因地制宜地进行规范框架调整和规则解释突破,实现产业发展与技术升级规范措施保障之间的最佳平衡。
The artificial intelligence content generation mechanism covers the acquisition of data in the research and development stage and the application of generated content in the subsequent utilization stage.In the former stage,it mainly faces the problem of legal authorization of copyright for the acquired data,while in the latter stage,it is mainly oriented to the problems of judgement of copyright attributes of the generated content,attribution of the rights,and assumption of re-sponsibility for copyright infringement.The existing normative analysis framework for the two stages of the main problems faced by the rules of local mismatch,the root cause is that the existing normative design can no longer meet the needs of in-dustrial security brought about by the development of artificial intelligence,and can not effectively respond to the adjust-ment of the development of artificial intelligence industrial policy.The change of AI content generation mechanism driven by technology directly impacts the existing copyright system's recognition of the underlying logic of work expression and"di-chotomy of Idea and Expression",and at the same time,we also face the dilemma of the discrepancy between the property rules for prior authorization and the needs of the learning model for massive resources,the risk of copyright infringement during the whole phase of machine learning content acquisition,and the impracticality of requiring only copyright compli-ance due to the diversity and complexity of data protection interests.In the face of these problems,instead of designing rules in a patchwork manner,we should try to solve the systematic cognitive problems in a comprehensive manner,and try to design a system that separates authorship and other copyrights on the basis of the solid"dichotomy of Idea and Expres-sion",in order to implement the principle of honesty and trust to ensure the authenticity of the source.The"question of development"between the real world and the evolution of technology can be solved through diversified solutions,such as le-gal purchase and contractual risk-bearing,opening the floodgates of copyright fair use for data acquisition in the pre-training stage of AI and exemption from liability through the safe harbor rule,centralized authorization by collective manage-ment organizations,and the establishment of open authorized data resources.Adjustment of the normative framework and breakthrough in the interpretation of rules should be carried out according to local conditions,so as to find the best perspec-tive to adapt to the development of the industry and the safeguard of normative measures for technological upgrading.

artificial intelligencecontent generationindustrial policycopyrightinstitutional barriers

张平

展开 >

北京大学法学院,北京 100871

北京大学人工智能研究院,北京 100871

北京大学武汉人工智能研究院,武汉 430075

人工智能 内容生成 产业政策 著作权 制度障碍

国家社会科学基金重大项目北京大学武汉人工智能研究院项目

21ZDA049

2024

法律科学-西北政法大学学报
西北政法大学

法律科学-西北政法大学学报

CSTPCDCSSCICHSSCD北大核心
影响因子:2.096
ISSN:1674-5205
年,卷(期):2024.42(3)
  • 2
  • 75