首页|基于"3414"肥效试验建立BP神经网络寻优的新模型初探

基于"3414"肥效试验建立BP神经网络寻优的新模型初探

扫码查看
针对上海市崇明滧东地区传统施肥方式不能满足水稻需肥规律的问题,以水稻"3414"肥效试验结果为数据来源,以N、P2O5、K2O施用量为优化目标,建立3-7-1拓扑结构BP神经网络模型,通过遗传算法得到最优产量下的最优施肥配比.预测结果表明:当地较优的施肥配比是N、P2O5、K2O的施用量分别为 24.94、0.87、4.27 kg/亩(1 亩=667 m2),预计最高产量为 531.5 kg/亩.通过验证试验,在较优的施肥配比条件下,水稻的实际产量为 548.7 kg/亩,验证了BP神经网络模型预测结果的准确性.
Preliminary Study on Establishing a New Optimization Model of BP Neural Network Based on"3414"Fertilizer Efficiency Experiment
In connection with the problem that traditional fertilization method cannot meet the rule of fertilizer requirement of rice in Yaodong area of Chongming District,Shanghai,a 3-7-1 topological structure BP neural network model is established based on the results of rice"3414"fertilizer efficiency experiment as the data source and the application amounts of N,P2O5 and K2O as the optimization objective.The optimal fertilization ratio under the optimal yield is obtained by genetic algorithm.The predicted results show that the optimal fertilization ratio of N,P2O5 and K2O in local area is 24.94,0.87 and 4.27 kg/mu(1 mu = 667 m2),respectively,and the highest yield is expected to be 531.5 kg/mu.Through validation experiment,the actual yield of rice is 548.7 kg/mu under the optimal fertilization ratio,which verifies the accuracy of the predicted results of the BP neural network model.

"3414"fertilizer efficiency experimentBP neural networkgenetic algorithmparameter optimization

廖红蕖、孙美、王小丽、陈耿嘉

展开 >

上海化工研究院有限公司 上海 200062

上海化工院检测有限公司 上海 200062

"3414"肥效试验 BP神经网络 遗传算法 参数优化

上海市科委"科技创新行动计划"农业领域资助项目

16391901900

2024

肥料与健康

肥料与健康

ISSN:
年,卷(期):2024.51(2)
  • 11