首页|基于常规MRI影像组学预测急性脑梗死出血性转化的价值

基于常规MRI影像组学预测急性脑梗死出血性转化的价值

Value of radiomics based on conventional MRI in predicting hemorrhagic transformation in acute cerebral infarction

扫码查看
目的:探讨基于常规MRI影像组学预测急性脑梗死出血性转化(HT)的价值.方法:回顾性分析我院2017年1月—2022年12月120例急性脑梗死(HT阳性60例,HT阴性60例)的完整资料.所有患者均接受头颅常规MRI扫描,并随机将患者以7:3的比例分为训练组(n=84)和验证组(n=36).运用软件勾画病灶ROI及提取纹理特征,利用最小冗余最大相关(mRMR)及最小绝对值收敛和选择算子(LASSO)回归分析筛选特征,构建影像组学模型.绘制受试者操作特征(ROC)曲线、应用决策曲线分析(DCA)评估模型的预测能力、临床应用价值.结果:临床模型、常规MRI模型、联合序列影像组学模型、个性化模型1及个性化模型2在训练组和验证组中曲线下面积(AUC)值分别为0.72(0.61~0.83)和 0.68(0.50~0.86)、0.93(0.86~0.98)和 0.93(0.79~0.99)、0.97(0.94~1.00)和 0.97(0.93~1.00)、0.96(0.92~1.00)和 0.99(0.98~1.00)、0.98(0.95~1.00)和 0.98(0.96~1.00).DCA 表明个性化模型2患者临床受益好于个性化模型1.结论:常规MRI模型、联合序列影像组学模型、个性化模型1、个性化模型2均优于临床模型的诊断效能,均具有很高预测急性脑梗死出血性转化的价值.个性化模型1、2诊断效能相当,但个性化模型2患者临床受益好于个性化模型1.
Objective:To investigate the value of radiomics based on conventional MRI in predic-ting hemorrhagic transformation(HT)in acute cerebral infarction.Methods:In this retrospective stud-y,120 patients with acute cerebral infarction from January 2017 to December 2022 in our hospital were enrolled and divided into HT positive group(n=60)and HT negative group(n=60).All patients un-derwent routine head MRI scan and were randomly assigned to the training group(n=84)and the val-idation group(n=36)in a 7:3 ratio.Lesion ROI was delineated and texture features were extracted u-sing software.Minimum redundancy maximum relevance(mRMR)and least absolute shrinkage and selection operator(LASSO)regression analysis were used to screen features and establish radiomics signature.The performance and the clinical usefulness of the models was assessed by receiver operating characteristic(ROC)curve and decision curve analysis(DCA).Results:The area under curve(AUC)(95%CI)values of clinical model,conventional MRI model,combined sequential radiomics model,per-sonalized model 1 and personalized model 2 in the training and validation groups were 0.72(0.61~0.83)and 0.68(0.50~0.86),0.93(0.86~0.98)and 0.93(0.79~0.99),0.97(0.94~1.00)and 0.97(0.93~1.00),0.96(0.92~1.00)and 0.99(0.98~1.00),0.98(0.95~1.00)and 0.98(0.96~1.00),re-spectively.DCA demonstrated that personalized model 2 was better than personalized model 1 for clini-cal benefits.Conclusion:Compared with clinical model,the conventional MRI model,combined sequen-tial radiomics model,personalized model 1 and personalized model 2 have better diagnostic efficacy to predict hemorrhagic transformation in acute cerebral infarction.Although personalized model 1 and 2 have similar diagnostic performance,personalized model 2 has better clinical benefits.

Acute cerebral infarctionRadiomicsHemorrhagic transformation

丁俊、陈基明、邵颖、丁治民、昌杰

展开 >

241001 安徽芜湖,皖南医学院第一附属医院(弋矶山医院)放射科

241002 安徽芜湖,皖南医学院医学信息学院

急性脑梗死 影像组学 出血性转化

安徽省卫生健康科研项目安徽省自然科学基金面上项目

AHWJ2022b0442108085MF205

2024

放射学实践
华中科技大学同济医学院

放射学实践

CSTPCD北大核心
影响因子:1.08
ISSN:1000-0313
年,卷(期):2024.39(7)
  • 8