首页|基于多模态MRI影像组学模型预测MGMT甲基化阳性高级别胶质瘤1p/19q缺失状态

基于多模态MRI影像组学模型预测MGMT甲基化阳性高级别胶质瘤1p/19q缺失状态

Radiomics model based on multi-model MRI for predicting 1p/19q deletion status in high-grade gliomas with positive-methylation MGMT

扫码查看
目的:基于多模态MRI构建影像组学模型,无创性预测MGMT甲基化阳性高级别胶质瘤的1p/19q缺失状态.方法:回顾性分析2021年9月—2023年9月在本院经手术病理证实的106例高级别胶质瘤患者的完整临床和影像资料.所有肿瘤为MGMT甲基化阳性,其中合并1p19q共缺失者33例,非1p19q共缺失者73例.将所有患者按照7∶3的比例随机分为训练集和测试集.分别在T1WI、T2WI、T2-FLAIR和CE-T1WI四个序列的图像上,沿着肿瘤边缘逐层勾画ROI并生成容积感兴趣区(VOI)后提取影像组学特征.应用主成分分析(PCA)方法进行特征降维,并应用方差分析方法进行特征筛选,随后分别采用 自编码器(AE)、逻辑回归(LR)、随机森林(RF)和支持向量机(SVM)四种机器学习算法构建预测MGMT甲基化阳性合并1p/19q共缺失状态的影像组学模型.采用受试者工作特征曲线评估各模型的诊断效能.结果:AE影像组学模型在预测高级别胶质瘤MGMT甲基化阳性合并1p/19q缺失状态表现出较高的AUC,其在训练集和测试集中的AUC分别为0.924和0.864;而LR、RF和SVM影像组学模型在训练集中的AUC分别为0.950、1.000和0.951,在测试集中的AUC分别为0.777、0.773和0.786.结论:基于多模态MRI影像组学模型可以有效预测MGMT甲基化阳性高级别胶质瘤的1p/19q缺失状态.
Objective:The purpose of this study was to construct a radiomics model based on multi-model MRI for noninvasively predicting the 1p/19q deletion status in high-grade gliomas with methylation-positive MGMT.Methods:106 high-grade glioma patients who underwent surgery and were confirmed by pathological biopsy in the Department of Neurosurgery of the First Affiliated Hos-pital of Xinjiang Medical University from September 2021 to September 2023 were retrospectively ana-lyzed,of which 33 patients with MGMT methylation-positive combined 1p19q co-deletion and 73 pa-tients with MGMT methylation-positive combined 1p19q non-co-deficiency.All patients were randomly divided into a training set and a testing set at a ratio of 7∶3.T,WI,T2 WI,T2-FLAIR,and CE-T1WI sequences were selected to outline the tumor region of interest(ROI)layer by layer along the tumor margin and generate the volume of interest(VOI)to extract the radiomics features.Principal compo-nent analysis(PCA)was applied for dimensionality reduction,and ANOVA method was used for fur-ther feature selecting.And then,four machine learning method including auto-encoder(AE),logistic regression(LR),random forest(RF),and support vector machine(SVM)were respectively used to build the radiomics models for predicting MGMT methylation-positive combined with 1p/19q co-dele-tion status.The diagnostic efficacy of each model was assessed by ROC curve analysis.Results:Among the four radiomics models,the AE radiomics model was the optimal model for predicting the 1p/19q deletion status in high-grade gliomas with positive-methylation MGMT,with AUC of 0.924 and 0.864 in the training set and test set,respectively;and the AUCs of the other three radiomics models(LR,RF,and SVM)were 0.950,1.000 and 0.951 in the training set,and 0.777,0.773 and 0.786 in the test set,respectively.Conclusion:Multi-model MRI radiomics-based model can effectively predict MGMT methylation positivity combined with 1p/19q deletion status in high-grade gliomas.

Brain gliomaPathological gradeRadiomicsO6-methylguanine-DNA methyl-transferase1p/19q

赵伟、黄海燕、丁爽、罕迦尔别克·库锟、徐蕊、王云玲

展开 >

830054 新疆乌鲁木齐,新疆医科大学第一附属医院影像中心

脑胶质瘤 影像组学 磁共振成像 O6-甲基鸟嘌呤-DNA甲基转移酶 1p/19q

2024

放射学实践
华中科技大学同济医学院

放射学实践

CSTPCD北大核心
影响因子:1.08
ISSN:1000-0313
年,卷(期):2024.39(12)