首页|脑网络分析早期诊断自闭症谱系障碍:基于扩散基谱成像和机器学习

脑网络分析早期诊断自闭症谱系障碍:基于扩散基谱成像和机器学习

Application of machine learning and brain network analysis based on diffusion spectrum imaging in the early diagnosis of autism spectrum disorder

扫码查看
目的:利用扩散基光谱成像(DBSI)结合深度学习方法,探索学龄前自闭症谱系障碍(ASD)儿童脑网络的拓扑结构变化及其诊断价值.方法:回顾性分析2022年9月—2023年7月在本院确诊的31例ASD患者和30例健康志愿者(HCs)的临床及颅脑DBSI(DBSI_20、DBSI_21)资料.两组受试者的年龄均为2~6岁.将每例受试者的DBSI_20和DBSI_21的原始数据导入DSI工作软件,生成DBSI_combine扩散图像.对DBSI_20、DBSI_21和DBSI_combine三组图像数据分别采用DSI Studio进行连通性矩阵和图理论分析,并采用Kruskal-Wallis方法提取全局图和节点图测量中组间差异最显著的特征;使用Pearson相关系数(PCC)方法对相关系数大于0.99的特征进行降维,减少特征数.采用?方法将筛选得到的三组最优特征分别构建预测ASD的模型,并采用ROC曲线分析评估3个模型的预测效能,评估指标包括符合率、召回率、精确率、F1分数和ROC曲线下面积(AUC).结果:基于DBSI_20序列构建的模型中,最具辨别能力的特征是左侧角回偏心率和右侧颞中回偏心率;基于DBSI_21序列构建的模型中,最具辨别能力的特征是右上颞叶特征向量中心性和左小脑9区网页排名中心性;基于DBSI_combine图像构建的模型中,最具辨别能力的特征是左中央后回的中心度和左角回偏心率.基于DBSI_20序列构建的分类模型的AUC高于基于DBSI_21序列构建的模型(0.963 vs.0.481),基于DBSI_combine序列构建的分类模型的AUC(0.975)最高.DBSI_20模型的符合率、召回率、精确率和F1分数分别为0.890、1.000、0.784和0.879,DBSI_21模型的相应参数值分别为0.579、0.556、0.861 和 0.675,DBSI_combine 模型分别为 0.936、0.889、1.000 和 0.979.结论:基于 DBSI_20 或DBSI_combine序列构建的分类模型能够较准确地预测学龄前ASD儿童,且以DBSI_combine模型的效能更佳.
Objective:Based on diffusion basis spectrum imaging(DBSI)combined with deep learning methods,the purpose of this study was to explore the changes in the topological structure of brain networks in preschool children with autism spectrum disorder(ASD)and their diagnostic value.Methods:A retrospective analysis was conducted on clinical and brain DBSI data from 31 diagnosed ASD patients and 30 healthy controls(HCs)at our hospital from September 2022 to July 2023.The a-ges of all subjects in both groups ranged from 2 to 6 years.The original data of DBSI_20 and DBSI_21 sequences for each subject were imported into DSI Studio software to generate DBSI_combine diffusion images.All data of the three sets of images were analyzed for connectivity matrices and graph theory u-sing DSI Studio.Then,the Kruskal-Wallis method was used to extract the most valuable features showing significant intergroup differences in global and node graph metrics.Pearson correlation coeffi-cient(PCC)method was used to perform dimensionality reduction on features with correlation coeffi-cients greater than 0.99,thus to reduce the number of features.And then,the best features were selec-ted out for constructing three predicting models.ROC curve analysis was performed to evaluate the predictive performance of the models based on the three sets of sequences,with metrics including accu-racy,recall,precision,F1 score,and area under the ROC curve(AUC).Results:In the model based on the DBSI_20 sequence,the most discriminative features were Angular_L_eccentricity and Temporal_Mid_R_eccentricity;in the model based on the DBSI_21 sequence,the most discriminative features were Temporal_Sup_R_eigenvector_centrality and Cerebellum_9_L_pagerank_centrality;and in the model based on the DBSI_combine images,the most discriminative features are Postcentral_L_Degree and Angular_L_eccentricity.The model based on the DBSI_20 sequence achieved a higher AUC than that based on the DBSI_21 sequence(0.963 vs.0.481),while the model constructed from the DBSI_combine images had the highest AUC(0.975).The accuracy,recall,precision and F1 score of the DB SI_20 model were 0.890,1.000,0.784 and 0.879,respectively;for the DBSI_21 model,they were 0.579,0.556,0.861 and 0.675,respectively;and for the DBSI_combine model,they were 0.936,0.889,1.000 and 0.979,respectively.Conclusion:The prediction models based on the DBSI_20 sequence or DBSI_combine images can accurately predict preschool children with ASD,and the DBSI_combine model has superior efficacy.

Diffusion basis spectrum imagingMachine learningAutism spectrum disorderPredictive performance

刘雨晴、易婷、高兵、蔡齐芳、金科

展开 >

410000 长沙,中南大学湘雅医学院附属儿童医院(湖南省儿童医院)放射科

扩散基础光谱成像 机器学习 自闭症谱系障碍 预测效能

2024

放射学实践
华中科技大学同济医学院

放射学实践

CSTPCD北大核心
影响因子:1.08
ISSN:1000-0313
年,卷(期):2024.39(12)