首页|编码孔径辐射成像定位技术

编码孔径辐射成像定位技术

扫码查看
随着核物理技术的广泛应用及其辐射防护对放射源的成像需求在不断增加.编码孔径成像定位系统作为一种高精度的放射源成像及定位装置,可以准确定位放射源的位置并重建放射源的大致形状,本文探究编码孔径成像定位中的多种重建算法对具有连续能谱的放射源位置及形状重建效果对比,从而确定不同重建算法的优缺点及其适用的场景.利用Geant4软件对编码孔径成像定位系统进行模拟,得到相关数据再使用δ解码算法、精细采样平衡解码算法、卷积神经网络算法、最大似然最大期望值法(MLEM)进行编程实现并重建放射源的位置.结果表明:4种重建算法都可以清晰地定位到放射源的位置;δ解码算法和精细采样平衡解码算法重建图像有伪影;卷积神经网络算法对于线源、面源重建效果较差,可以通过扩展训练集解决;MLEM算法的对比度-噪声比(CNR)值较高,重建效果较好,但是对线源和面源重建会丢失部分细节信息.
Positioning technique of coded aperture radiation imaging
With the widespread application of nuclear technology and radiation protection,the demand for radioactive sources imaging is increasing.As a high-precision imaging and positioning device for radioactive sources,the coded aperture imaging positioning system can accurately determine the location of radioactive sources and reconstruct their rough shape.This study explores the comparison of the reconstruction effects of various reconstruction algorithms in coded aperture imaging positioning on the position and shape reconstruction of radioactive sources with continuous energy spectra,to determine the advantages and disadvantages of different reconstruction algorithms and their applicable scenarios.Geant4 software was used to simulate the encoded aperture imaging positioning system,and the relevant data were obtained.Thereafter,the δ decoding,fine sampling balance decoding,and convolutional neural network(CNN)algorithms,along with the maximum likelihood maximum expected value method(MLEM)were used to program and reconstruct the location of the radioactive source.The results demonstrate that the four reconstruction algorithms can locate the radioactive source clearly;the δ decoding and fine sampling balance decoding algorithms have artifacts to reconstruct the image;and the CNN algorithm has a poor effect on the reconstruction of line and surface sources,which can be addressed by an extended training set;the contrast to noise ratio(CNR)value of the MLEM algorithm is high,and the reconstruction effect is good,however,some details of the line and surface sources reconstruction will be lost.

Radiation imaging localizationCollimatorMonte Carlo simulationImage reconstructionNeural network

昂文胜、董顺成、杜永欢、张佩毅、文万信

展开 >

苏州大学 放射医学与辐射防护国家重点实验室 苏州 215123

苏州大学医学部放射医学与防护学院 苏州 215123

辐射成像定位 准直器 蒙特卡洛模拟 图像重建 神经网络

2024

辐射研究与辐射工艺学报
中国科学院上海应用物理研究所

辐射研究与辐射工艺学报

CSTPCD
影响因子:0.527
ISSN:1000-3436
年,卷(期):2024.42(2)
  • 24