首页|γ射线对氮化硼纳米片的缺陷构筑及其光催化性能

γ射线对氮化硼纳米片的缺陷构筑及其光催化性能

扫码查看
在能源催化领域中,开发低成本、高丰度的高效非金属催化剂一直是光催化产氢反应的研究热点之一.氮化硼纳米片(BNNS)是优异的非金属二维材料,然而,传统化学方法难以突破其宽禁带将其转变为可见光响应催化剂.本工作提出,在环境温度和压力下,高能射线能够可控地构筑BNNS的内部缺陷,实现其可见光催化产氢性能.实验结果表明,经γ射线辐照后,BNNS的光催化产氢性能随吸收剂量的增加而明显提高.辐照后样品的最大产氢速率可达1 033.7 μmol/(g·h),较化学法制备的缺陷氮化硼提高近两个数量级.进一步结构表征证实,辐射在BNNS中产生三硼中心缺陷,导致BNNS形成中间能级并提高了载流子分离效率,从而将BNNS由宽禁带半导体转变为可见光响应催化剂.本研究为BNNS在可见光催化领域的应用提供了全新思路,并展示出辐射技术在催化剂的可控缺陷构筑和活性调控中的独特作用.
Effect of gamma-ray radiation on defect engineering and photocatalytic properties of boron nitride nanosheets
The development of low-cost,abundant,and efficient non-metal catalysts has always been a research focus on photocatalytic hydrogen evolution reactions.Boron nitride nanosheet(BNNS),which is a promising non-metallic two-dimensional material,possesses remarkable properties.However,its inherently wide bandgap significantly limits their potential for visible-light-responsive catalysis,and conventional chemical methods struggle to overcome this limitation.In this study,we employed high-energy ionizing radiation to precisely regulate defect formation in BNNS at ambient temperature and pressure.The results showed that gamma-ray radiation markedly enhanced the efficiency of photocatalytic hydrogen production of the irradiated BNNS with increasing absorbed dose.The maximum hydrogen production rate of the samples reached 1 033.7 μmol/(g·h),which represents an increase of almost two orders of magnitude compared to commercial BNNS.The structural characterization also confirmed that the introduction of three-boron-center defects results in forming intermediate energy levels and improving the charge carrier separation efficiency of BNNS.This transformation converts BNNS from a wide bandgap semiconductor to a visible-light-responsive catalyst.This work not only provides a novel approach for the application of BNNS in visible-light photocatalysis,but also demonstrates the unique role of radiation technology in quantitatively regulating defects and improving catalytic activity.

Boron nitride nanosheetGamma-ray radiationRadiation effectDefect engineeringPhotocatalysis

姜志文、汪谟贞、葛学武

展开 >

精准智能化学重点实验室 中国科学技术大学高分子科学与工程系 合肥 230026

氮化硼纳米片 伽马射线辐射 辐射效应 缺陷构筑 光催化

2024

辐射研究与辐射工艺学报
中国科学院上海应用物理研究所

辐射研究与辐射工艺学报

CSTPCD
影响因子:0.527
ISSN:1000-3436
年,卷(期):2024.42(6)