首页|机器学习在环境分析检测中的应用研究进展

机器学习在环境分析检测中的应用研究进展

扫码查看
随着环境数据的迅速增加,机器学习已成为环境分析检测研究领域的重要工具.为推动该领域的持续创新,该综述简要介绍了机器学习的基本概念、常见算法和软件平台,并通过全面的文献分析,重点总结了利用机器学习技术开展环境分析检测研究的最新进展.基于机器学习方法的环境分析检测研究目前主要集中在常规环境质量指标检测、环境(非)靶向检测分析、微(纳)塑料分类识别、污染物的环境行为及溯源研究等五个方面.进一步指出目前机器学习在样品采集和前处理部分研究领域、新技术整合、多模态数据融合、模型可解释性和可信度等方面存在不足.最后,提出了机器学习方法在未来环境分析检测中可能的应用方向,进一步推动和扩展机器学习在该领域的应用.该综述可为环境分析检测及其交叉领域的相关研究者和管理决策者提供指导和建议.
Recent Advances in the Application of Machine Learning in Environmental Analysis and Detection
With the rapid increase in environmental data,machine learning has become an essential tool for environmental analysis and detection. The main goal of this review is to foster the continuous innovation of this field. In this review,the basic concepts of machine learning,common algorithms and software platforms are briefly introduced. Through a comprehensive literature analysis,it high-lights the latest progress in environmental analysis and detection research that incorporates machine learning technology. Currently,research on environmental analysis and detection based on machine learning methods mainly focuses on five areas:detection of conventional environmental quality indi-cators,targeted and non-targeted environmental detection analysis,classification and identification of microplastics and nanoplastics,environmental behaviour of pollutants,and source apportion-ment. Furthermore,the paper identifies several existing deficiencies in the field. These include sam-ple collection and pre-treatment,integration of new technologies,multimodal data fusion,and the interpretability and credibility of models in the current research. Finally,this review proposes poten-tial future applications of machine learning methods in environmental analysis and detection,aiming to further advance and expand the application of machine learning in this field. This review can pro-vide guidance and recommendations for researchers and decision-makers in the field of environmental analysis and detection and its intersecting areas.

environmental analytical chemistryenvironmental detectionmachine learningemerging pollutants

刘思思、张波、李星颖、辛蕾、应光国、陈长二

展开 >

华南师范大学 环境学院/环境研究院,广东 广州 510006

浙江海拓环境技术有限公司,浙江 杭州 310000

环境分析化学 环境检测 机器学习 新污染物

国家重点研发计划国家自然科学基金资助项目国家自然科学基金资助项目

2022YFC39021024237721442277457

2024

分析测试学报
中国广州分析测试中心,中国分析测试协会

分析测试学报

CSTPCD北大核心
影响因子:1.498
ISSN:1004-4957
年,卷(期):2024.43(8)