首页|基于迁移学习的飞行器高低阶精度数据融合方法

基于迁移学习的飞行器高低阶精度数据融合方法

扫码查看
为提升飞行器气动性能分析效率、降低所需成本,采用了两种基于迁移学习的数据融合智能预测方法:一种是根据样本特征进行权重配比的多保真度融合方法,利用自适应提升算法进行样本错误率评估,并依据结果进行加权融合;另一种是基于模型的参数冻结迁移方法,将高低阶精度数据进行神经网络分层训练,实现模型意义上的数据融合.两种方法均考虑将高阶精度的风洞试验数据与低阶精度的CFD数据进行深度融合训练,从而实现精准预测.以YF-16飞机标模为例进行预测分析,结果表明基于迁移学习的数据融合方法能够实现气动力的准确预测,并在精度上超过了传统CoKriging融合方法.
High and low order precision data fusion method for aircraft based on transfer learning
In order to enhance the efficacy of aircraft aerodynamic performance analysis and reduce expenditure,two data fusion methods based on transfer learning are implemented.The first one is a multi-fidelity fusion method with weight distribution based on sample features.In this case,an adap-tive boosting algorithm is employed to assess the sample error rate,and the weighted fusion is con-ducted by using the error rate.Another method is a parameter freezing transfer method based on deep neural network models.This method trains high-order and low-order precision data into network layers with the objective of achieving data fusion in the sense of the model.Both methods consider deep fusion training of high-order precision wind tunnel test data and low-order precision CFD data,fully leveraging the correlation between high-order and low-order data,thereby improving prediction accuracy.The results of the analysis of the YF-16 airplane model demonstrate that the data fusion method based on transfer learning can achieve accurate prediction of aerodynamic forces and returns more precise predictions compared with the traditional CoKriging method.

data fusiontransfer learningwind tunnel testingCFD calculationdeep neural network

崔榕峰、李鸿岩、王祥云、刘哲、郭承鹏

展开 >

航空工业空气动力研究院,辽宁沈阳 110034

数据融合 迁移学习 风洞试验 CFD计算 深度神经网络

航空科学基金资助航空科学基金资助

2022Z0060260042023M071027001

2024

飞行力学
中国飞行试验研究院

飞行力学

CSTPCD北大核心
影响因子:0.37
ISSN:1002-0853
年,卷(期):2024.42(4)
  • 4