首页|嵌入式大气数据系统的一种双重神经网络模型

嵌入式大气数据系统的一种双重神经网络模型

扫码查看
针对嵌入式大气数据系统的神经网络算法精度要求对应大量数据进行训练的情况,建立了一种双重神经网络模型.通过将初始神经网络输出的大气参数作为输入再度训练,实现了在相同样本下具有更高精度,输出参数高度、马赫数、迎角和侧滑角的误差分别减少了 21.08%、59.62%、53.45%、31.69%.并且当压力值输入存在误差时,双重神经网络的输出精度也更高,具有更好的误差容错性;当压力值输入误差超过容许限度后,双重神经网络的冗余设计使得模型仍可以获得准确的参数输出.新模型为嵌入式大气数据系统提供了一种更加准确高效的算法模型.
A dual neural network model for flush air date sensing system
A dual neural network model was established to address the accuracy requirements of neural network algorithms for Flush Air Data Sensing System that require training on a large amount of data.By retraining the atmospheric parameters outputted by the initial neural network as inputs,a higher accuracy was achieved under the same samples.The errors of output parameters such as alti-tude,Mach number,angle of attack,and sideslip angle were reduced by 21.08%,59.62%,53.45%and 31.69%,respectively.When there is an error in the input of the pressure value,the output accuracy and the error tolerance of the dual neural network are higher.When the input error of the pressure value exceeds the allowable limit,the redundant design of the dual neural network al-lows the model to still obtain accurate parameter output.The new model provides a more accurate and efficient algorithm model for embedded atmospheric data systems.

flush air date sensing systemneural networkparameter accuracyerror analysisre-dundancy

高传昱、白亚磊

展开 >

南京航空航天大学航空学院,江苏南京 210016

嵌入式大气数据系统 神经网络 参数精度 误差分析 冗余

2024

飞行力学
中国飞行试验研究院

飞行力学

CSTPCD北大核心
影响因子:0.37
ISSN:1002-0853
年,卷(期):2024.42(4)
  • 7