首页|人工智能对碳排放的影响研究

人工智能对碳排放的影响研究

扫码查看
"双碳"目标的实现对于可持续发展具有重要意义,而利用人工智能减排是实现"双碳"目标的重要途径之一.然而人工智能的应用会加速资源消耗,导致碳排放的增长,这表明人工智能与碳排放之间的关系具有复杂性,对其进行识别具有重要意义.因此,构建数理模型反映人工智能对碳排放的影响,并采用半参数空间滞后模型呈现人工智能对碳排放的非线性影响.同时,利用中介效应模型对人工智能助力减排的路径进行检验.数理模型分析的结果显示,当人工智能发展到高智能阶段,将促进碳减排.而当人工智能处于弱人工智能时期,人工智能对碳排放的影响具有不确定性.实证结果表明:(1)省际碳排放之间存在空间正相关性.(2)当前人工智能对碳排放存在非线性影响,并且随着人工智能的发展呈现促进—抑制—促进的三阶段影响,稳健性检验结果仍支持这一结论.(3)地区异质性分析发现第三阶段促进影响主要体现在东部地区,阶段异质性分析发现不同时期人工智能对碳排放的影响也呈现非线性.(4)中介效应模型显示,人工智能通过绿色技术创新减少了碳排放,且节能减排技术的减排效果优于清洁能源技术.
On the Impact of Artificial Intelligence on Carbon Emissions
The application of artificial intelligence(AI)to reduce carbon emissions is one of the important ways to achieve carbon peaking and carbon neutrality goals.However,the application of AI can accelerate resource consumption and increase carbon emissions,which means that the relationship between AI and carbon emissions is complex,and it is of great significance to study it.Therefore,this paper constructs a mathematical model to describe the impact of AI on carbon emissions,and uses a partial linear spatial lag model to verify the nonlinear impact.At the same time,the mediation model is used to test the path of AI to help reduce emissions.The mathematical model shows that when AI develops to a high intelli-gence stage,it will reduce carbon emission.When AI is in the period of lower intelligence stage,the impact of it on carbon emissions is uncertain.The empirical results show that:(1)There is a positive spatial correlation between provincial carbon emissions.(2)Partial linear model regression results show that AI has a nonlinear effect on carbon emissions,and with the development of AI,the effects undergo three stages of promoting,inhibiting and promoting.Robust test results still support this conclusion.(3)The regional heterogeneity analysis found that the third stage promotion impact was mainly reflected in the eastern regions,and the stage heterogeneity analysis found that the impact of AI on carbon emissions in different periods was also nonlinear.(4)The mediation model shows that AI reduces carbon emissions through green technology innovation,and the emission reduction effect of energy-saving emission reduction technology is better than that of clean energy technology.

artificial intelligencecarbon emissionsHamilton functionpartial linear spatial lag modelmediation effect

林志炳、吴志煌

展开 >

福州大学经济与管理学院,福建福州 350108

人工智能 碳排放 汉密尔顿函数 半参数空间滞后模型 中介效应

国家社会科学基金

23BGL005

2024

福州大学学报(哲学社会科学版)
福州大学

福州大学学报(哲学社会科学版)

CHSSCD
影响因子:0.516
ISSN:1002-3321
年,卷(期):2024.38(3)
  • 24