首页|基于层间邻域信息熵的时序网络节点重要性评估方法

基于层间邻域信息熵的时序网络节点重要性评估方法

扫码查看
为识别时序网络中的重要节点,提出基于层间邻域信息熵的时序网络节点重要性评估方法.受明显路径流网络模型的启发,该方法通过引入参数ω,融合节点在相邻时间快照的层间邻域拓扑信息,使用信息熵来刻画网络结构的复杂性,并且兼顾了相邻时间快照的全局拓扑信息.通过使用SIR传播模型、Kendall相关系数、以及Top-k指标来验证该方法的有效性与适用性,在6个真实数据集上与其他6种评估方法进行比较.实验结果表明,提出的方法能够更为有效的识别出时序网络中的重要节点,同时对重要性排名靠前的节点的识别更为准确;可根据时序网络的拓扑结构调整ω从而提升该方法的评估效果;该方法的时间复杂度仅为O(mn),适用于大型时序网络.
A Method of Evaluating Importance of Nodes in Temporal Networks Based on Inter-layer Neighborhood Information Entropy
In order to identify important nodes in temporal networks,a node importance evaluation method is proposed in based on inter-layer neighborhood information entropy.Inspired by the di-rected flows model of temporal networks,the method introduces the parameter ω to fuse the in-ter-layer neighborhood topology information of node at adjacent snapshots,uses information en-tropy to describe the complexity of network structure,and also takes into account the global to-pological information.The effectiveness and applicability of the method is proved by using the SIR propagation model,Kendall correlation coefficient,Top-k metrics,and the proposed method is compared with six evaluation methods on six real datasets.The experimental results demon-strate that the method can more effectively identify the important nodes in the temporal network.Meanwhile,the identification of the nodes of with high importance is more accurate.In addition,the parameter ω can be adjusted to improve the evaluation effect of this method according to the topology of the temporal network.Last but not least,the time complexity of this method is O(mn),which is suitable for large-scale temporal networks.

temporal networkinter-layer neighborhoodnode importanceinformation entropy

洪成、蒋沅、严玉为、余荣斌、杨松青

展开 >

南昌航空大学信息工程学院,南昌 330063

时序网络 层间邻域 节点重要性 信息熵

国家自然科学基金国家自然科学基金南昌航空大学研究生创新专项基金

6166303061663032YC2021-043

2024

复杂系统与复杂性科学
青岛大学

复杂系统与复杂性科学

CSTPCD北大核心
影响因子:0.798
ISSN:1672-3813
年,卷(期):2024.21(1)
  • 27