首页|基于分工和模糊控制的粒子群算法

基于分工和模糊控制的粒子群算法

扫码查看
为解决粒子群算法在求解复杂优化问题时容易陷入局部最优、寻优精度低、后期收敛慢等问题,提出一种基于分工和模糊控制的粒子群算法,使用分工、参数自适应调整和融合距离因素的模拟退火三种策略对粒子群算法进行改进.将粒子分为侦察粒子和后卫粒子,侦察粒子负责进行探索,后卫粒子向个体最优解和全局最优解学习,保证种群多样性并加快搜索速度;使用Sigmoid函数调节惯性权重,模糊逻辑控制学习因子,以平衡算法的探索和开发能力;以模拟退火机制更新全局最优粒子,同时兼顾距离因素,增强算法跳出局部最优解的能力.采用25个标准测试函数进行仿真实验,仿真结果表明,改进算法在收敛精度、速度和稳定性上都有更好表现.
Particle Swarm Optimization Algorithm Based on Labor Division and Fuzzy Control
In order to overcome the shortages of the particle swarm optimization algorithm,such as low accuracy,slow convergence and falling into local optima,a particle swarm optimization al-gorithm based on labor division and fuzzy control is proposed,which improves the algorithm by using the division of labor,parameter adaptive adjustment and simulated annealing with distance factors.Particles are divided into scout and rearguard ones,the former searches randomly and the latter learns from the best individual solutions as well as the best global solution to ensure the diversity of population and to accelerate the search.A sigmoid function is used to adjust the iner-tial weight and fuzzy logic is applied to balance exploration and exploitation capability of the algo-rithm.The best global particle is updated according to simulated annealing with distance factors taken into account,which improves the ability of the algorithms to jump out of the local optima.Simulation experiments on 25 standard test functions show that the improved algorithm has bet-ter performance in terms of convergence accuracy,speed and stability.

swarm intelligenceparticle swarm optimizationindividual optimal update ratedivi-sion of laborfuzzy logicsimulated annealing

李金、张纪会、高学柳、张保华

展开 >

青岛大学 复杂性科学研究所,山东青岛 266071

青岛大学 山东省工业控制技术重点实验室,山东青岛266071

青岛港国际股份有限公司,山东青岛 266011

群体智能 粒子群算法 个体最优更新率 分工策略 模糊逻辑 模拟退火

国家自然科学基金国家自然科学基金青岛市科技计划

616732286207226021-1-2-16-zhz

2024

复杂系统与复杂性科学
青岛大学

复杂系统与复杂性科学

CSTPCD北大核心
影响因子:0.798
ISSN:1672-3813
年,卷(期):2024.21(1)
  • 21