首页|基于改进KNN近邻实体的知识图谱嵌入模型

基于改进KNN近邻实体的知识图谱嵌入模型

扫码查看
为了更好地表示邻居节点数量较少的罕见实体,提出基于近邻实体的知识图谱嵌入模型NNKGE,使用K近邻算法获得目标实体的近邻实体作为扩展信息,并在此基础上提出RNNKGE模型,使用改进的K近邻算法获得目标实体在关系上的近邻实体,通过图记忆网络对其编码生成增强的实体表示.通过对公共数据集上实验结果的分析,以上两个模型在仅使用近邻节点的情况下均实现了对基准模型(CoNE)的性能超越,缓解了数据稀疏问题并改善了知识表示性能.
Knowledge Graph Embedding Model with the Nearest Neighbors Based on Improved KNN
In order to better represent the rare entities with a small number of neighbors,this pa-per proposes a knowledge graph embedding model based on the nearest neighbors(NNKGE),which uses the K-Nearest Neighbor algorithm to obtain the nearest neighbors of the target entity as extended information.Based on this,the relational nearest neighbors-based knowledge graph embedding model(RNNKGE)is proposed.To generate an enhanced entity representation,the nearest neighbors of the target entity in relation are obtained by the improved K-Nearest Neigh-bor algorithm and encoded by the graph memory network.Through the analysis of the experi-mental results on the public datasets,the above two models outperform the benchmark model(CoNE)in the case of using only the nearest neighbor nodes,alleviating the data sparsity prob-lem and improving the knowledge representation performance.

knowledge graphknowledge graph embeddingneighbor nodesK-nearest neighbor algorithmgraph memory network

刘婕、孙更新、宾晟

展开 >

青岛大学计算机科学技术学院,山东青岛 266071

知识图谱 知识图谱嵌入 邻居节点 K近邻算法 图记忆网络

教育部人文社会科学规划基金山东省自然基金面上项目

21YJA860001ZR2021MG006

2024

复杂系统与复杂性科学
青岛大学

复杂系统与复杂性科学

CSTPCD北大核心
影响因子:0.798
ISSN:1672-3813
年,卷(期):2024.21(2)