首页|基于改进蚁群算法的复杂环境路径规划

基于改进蚁群算法的复杂环境路径规划

扫码查看
针对蚁群算法在复杂环境下难以收敛、最优值差的问题,提出了一种改进蚁群算法.引入修正策略,提出两种局部修正方法以减少无效路径.提出一种自适应信息素更新机制,将初始信息素与蚂蚁所释放的信息素区分挥发;针对每次迭代蚂蚁所释放的信息素,通过设计时变挥发因子的变化律单独挥发,得到自适应挥发强度的信息素挥发机制.最后,将算法应用到不同复杂环境,与已有改进蚁群算法对比分析,研究结果说明改进算法在有效时间、平均距离、最短距离的优越性.
Complex Environment Path Planning Based on an Improved Ant Colony Algorithm
This paper proposes an improved ant colony algorithm to solve the problem of slow and poor convergence.First,a correction strategy is introduced,which includes two local correction methods to reduce invalid paths.Second,an adaptive pheromone updating mechanism is devel-oped to distinguish and volatilize the initial pheromone from the pheromone released.For the pheromone released in each iteration,a change law of time-varying volatilization factor is de-signed to volatilize independently and obtain pheromone volatilization mechanism with adaptive volatilization intensity.Finally,the proposed algorithm is applied to mobile robot path planning.Compared with the existing improved ant colony algorithms,the results show that the improved algorithm is excellent in terms of effective time,average distance and shortest distance.

ant colony algorithmimproved ant colony algorithmglobal optimizationpath planning

杨俊起、刘飞洋、张宏伟

展开 >

河南理工大学 电气工程与自动化学院,河南 焦作 454003

河南理工大学 河南省煤矿装备智能检测与控制重点实验室,河南 焦作 454003

蚁群算法 改进蚁群算法 全局优化 路径规划

国家自然科学基金河南省高校基本科研业务费专项基金

61973105NSFRF180335

2024

复杂系统与复杂性科学
青岛大学

复杂系统与复杂性科学

CSTPCD北大核心
影响因子:0.798
ISSN:1672-3813
年,卷(期):2024.21(3)