首页|基于数据驱动的锂电池健康状态预测

基于数据驱动的锂电池健康状态预测

扫码查看
针对传统基于数据驱动锂电池健康状态预测模型所存在的精确度低、鲁棒性差等问题,构建了一个融合非线性与线性特征的时序预测模型,其中多尺度一维卷积神经网络串联双向门控循环神经网络形成非线性时序预测分支,自回归模型构成线性分支.两个分支并联,最终通过全连接层输出预测结果.模型具备非线性部分的泛化能力和线性部分的记忆能力,对输入的幅值变化更加灵敏,并采用鲸鱼优化算法寻找最优模型超参数.通过对比现有模型以及消融实验验证了所提模型的有效性.
A Data-driven Model for Prediction of Lithium Battery State of Health
To address the problems of low accuracy and poor robustness of traditional data-driven battery state of health prediction model,this paper develops a time series prediction model fusing both nonlinear and linear branches.The nonlinear time series prediction branch is formed by a one-dimensional convolutional neural network with a multi-size parallel structure in series with a bidirectional gated recurrent neural network,and the linear branch is constructed by an autore-gressive model.Two branches in parallel output prediction results through a fully connected lay-er.The above prediction model has the generalization ability of the nonlinear part and the memo-ry ability of the linear part,and is more sensitive to the change of input amplitude.The whale optimization algorithm is used to effectively search the optimal model hyper-parameters.The ef-fectiveness and superiority of the linear nonlinear fusion prediction model proposed in this paper are verified by comparing existing models and ablation experiments.

battery state of healthbidirectional gated recurrent neural networkautoregressive modelwhale optimization algorithm

崔孝凯、王庆芝、刘其朋

展开 >

青岛大学自动化学院,山东 青岛 266071

电池健康状态 双向门控循环神经网络 自回归模型 鲸鱼优化算法

国家自然科学基金青年基金

61903212

2024

复杂系统与复杂性科学
青岛大学

复杂系统与复杂性科学

CSTPCD北大核心
影响因子:0.798
ISSN:1672-3813
年,卷(期):2024.21(3)