首页|采用遗传算法优化的深度学习模型在育种中的实践

采用遗传算法优化的深度学习模型在育种中的实践

扫码查看
近年来,深度学习技术在多个领域都取得了显著的突破,成为数据驱动研究的核心工具.特别是在生物育种领域,深度学习模型为性状预测、基因选择和功能注释等任务提供了强大的支持.但由于生物数据的特殊性,如高维度、大量未标注数据等,传统的深度学习模型往往难以直接应用.为解决此问题,研究者开始考虑遗传算法对模型参数进行优化.遗传算法作为一种模拟自然进化过程的全局搜索方法,可以系统地探索模型的参数空间,寻找最佳的模型配置.通过结合遗传算法,深度学习模型在生物育种任务中的表现得到了显著的提升,同时也提高了模型的泛化能力.本研究针对采用遗传算法优化的深度学习模型在育种中的应用进行了系统性的探讨,深入解析了遗传算法在模型优化中的作用机制,并为育种研究者提供有效的数据分析工具和方法.
Genetic Algorithm-optimized Deep Learning Models in Breeding Practices
In recent years,deep learning technologies have achieved significant breakthroughs across various do-mains,establishing themselves as the core tools for data-driven research.Particularly in the field of biological breeding,deep learning models offer powerful support for tasks such as trait prediction,gene selection,and func-tional annotation.However,due to the unique characteristics of biological data,such as high-dimensionality and a large amount of unlabeled data,traditional deep learning models often struggle with direct applications.To address this challenge,researchers have turned to optimizing model parameters using genetic algorithms.Serving as a global search method that simulates the natural evolutionary process,the genetic algorithm systematically explores the parameter space of models to identify optimal configurations.By integrating genetic algorithms,the perfor-mance of deep learning models in biological breeding tasks has been markedly enhanced,with improvements also seen in model generalizability.This study delves into the applications of genetic algorithm-optimized deep learning models in breeding,providing an in-depth analysis of the role and mechanism of genetic algorithms in model opti-mization,thereby offering researchers effective data analysis tools and methods for breeding.

Genetic algorithmDeep learningBreedingTrait predictionModel optimization

田地

展开 >

河南财政金融学院,郑州,450046

遗传算法 深度学习 育种 性状预测 模型优化

河南省科技攻关项目

232102210141

2024

分子植物育种
海南省生物工程协会

分子植物育种

CSTPCD北大核心
影响因子:0.765
ISSN:1672-416X
年,卷(期):2024.22(1)
  • 10