分子植物育种2024,Vol.22Issue(12) :4146-4151.DOI:10.13271/j.mpb.022.004146

计算机人工智能在作物病害识别与防治中的应用

Application of Computer Artificial Intelligence in Crop Disease Identi-fication and Prevention

于冠杰
分子植物育种2024,Vol.22Issue(12) :4146-4151.DOI:10.13271/j.mpb.022.004146

计算机人工智能在作物病害识别与防治中的应用

Application of Computer Artificial Intelligence in Crop Disease Identi-fication and Prevention

于冠杰1
扫码查看

作者信息

  • 1. 新乡开放大学,新乡,453000
  • 折叠

摘要

本研究系统综述了当前计算机人工智能技术在作物病害领域的应用研究,主要涵盖了深度学习、图像处理和机器学习等方面.通过分析传统方法在作物病害识别中的局限性,强调了引入计算机人工智能技术的迫切性.同时,本研究详细介绍了计算机人工智能技术在作物病害检测和防治中的手段,如卷积神经网络(CNN),并对当前研究中存在的不足之处进行了深入剖析,包括算法泛化能力、数据质量和社会接受度等方面.通过对当前研究的全面分析,我们认为计算机人工智能技术在作物病害防治中有着非常广阔的应用前景,进一步的研究应更加注重跨学科研究、技术实际应用、数据隐私保护以及可持续发展等方面.

Abstract

This study systematically reviews the current application research of computer artificial intelligence technology in the field of crop diseases,mainly covering aspects such as deep learning,image processing,and ma-chine learning.By analyzing the limitations of traditional methods in crop disease identification,the urgency of in-troducing computer artificial intelligence technology is emphasized.At the same time,this study detailedly intro-duces the means of computer artificial intelligence technology in crop disease detection and prevention,such as Convolutional Neural Networks(CNN),and conducts an in-depth analysis of the current research deficiencies,inclu-ding algorithm generalization ability,data quality,and social acceptance,etc.Through a comprehensive analysis of current research,we believe that computer artificial intelligence technology has a very broad application prospect in the prevention and control of crop diseases.Further research should focus more on interdisciplinary research,practical application of technology,data privacy protection,and sustainable development.

关键词

计算机人工智能/作物病害识别/防治/深度学习/可持续发展

Key words

Computer artificial intelligence/Crop disease identification/Prevention/Deep learning/Sustainable development

引用本文复制引用

基金项目

2020年中国管理科学研究院教育科学研究所项目(JKS22KT0798)

出版年

2024
分子植物育种
海南省生物工程协会

分子植物育种

CSTPCD北大核心
影响因子:0.765
ISSN:1672-416X
参考文献量5
段落导航相关论文