首页|基于PCA-WOA-XGBoost的露天矿山爆破振动峰值振速预测

基于PCA-WOA-XGBoost的露天矿山爆破振动峰值振速预测

扫码查看
为提高爆破振动峰值振速预测的精度,提出了一种主成分分析(PCA)特征降维条件下,基于鲸鱼算法(WOA)优化极端梯度提升算法(PCA-WOA-XGBoost)的爆破振动峰值振速预测模型.以长九露天建材矿开采爆破振动监测数据为依据,首先利用主成分分析对11个峰值振速影响因素降维处理得到4个主成分,计算主成分的得分作为预测模型输入特征,然后使用鲸鱼算法对极端梯度提升算法的超参数进行寻优,将最优超参数输入到预测模型中进行训练、测试和评估.结果表明:使用主成分分析对初始特征降维处理能有效减少信息冗余,提升预测准确度;使用鲸鱼优化算法对XGBoost算法初始超参数进行寻优,改善了人工选择超参数导致模型过拟合的问题;PCA-WOA-XGBoost模型预测结果的平均绝对相对误差为14.59%,在7种预测模型中最低,具有更高的预测精度,给多因素影响下爆破振动峰值振速预测提供了参考.
Prediction of PPV of blasting vibration in open-pit mine based on PCA-WOA-XGBoost model
In order to improve the accuracy of blasting vibration peak speed prediction,a blasting vibration peak speed prediction model based on Whale Optimization Algorithm(WOA)optimized Extreme Gradient Boosting Algorithm(PCA-WOA-XGBoost)under the condition of Principal Component Analysis(PCA)feature dimensionality reduction is proposed.Based on the blasting vibration monitoring data of Changjiu open-pit building materials mine,four principal components were obtained by dimensionality reduction of 11 peak vibration speed influencing factors using principal component analysis,and the scores of the principal components were calculated as the input features of the prediction model,and then the hyper-parameters of the extreme Gradient Boosting Algorithm were optimized using the Whale Algorithm,and the optimal hyper-parameters were inputted to the prediction model for training,testing,and evaluating.The results show that:the dimensionality reduction of the initial features using principal component analysis can effectively reduce the redundancy of information and improve the prediction accuracy;the use of the whale optimization algorithm to optimize the initial hyperparameters of the XGBoost algorithm improves the problem of overfitting caused by manually selecting the hyperparameters;and the average absolute relative error of the prediction results of the PCA-WOA-XGBoost model is 14.59%,which is the lowest among the seven prediction models,and has a higher prediction accuracy.which provides a reference for the prediction of the peak vibration velocity of blasting vibration under the influence of multiple factors.

PPV predictionextreme gradient boosting algorithmprincipal component analysiswhale optimization algo-rithm

张文涛、汪海波、高朋飞、王梦想、吕闹、杨帆、程兵

展开 >

安徽理工大学土木建筑学院,安徽淮南 232001

安徽江南爆破工程有限公司,安徽宣城 242300

PPV预测 极端梯度提升算法 主成分分析 鲸鱼优化算法

2024

工程爆破
中国工程爆破协会

工程爆破

CSTPCD北大核心
影响因子:0.848
ISSN:1006-7051
年,卷(期):2024.30(6)