首页|基于特征选择的GS-KCV-XGBoost露天金属矿爆破块度预测模型

基于特征选择的GS-KCV-XGBoost露天金属矿爆破块度预测模型

扫码查看
为准确预测爆破块度,通过随机森林算法和皮尔逊相关性分析筛选出了影响爆破块度的关键因素,再输入到利用网格搜索法(GS)和K折交叉验证法(KCV)寻优处理后的极端梯度提升树(XGBoost)算法中,建立了一种基于特征选择的GS-KCV-XGBoost岩石爆破块度预测模型.研究结果表明:本模型比常见的随机森林回归模型、GS-XGB模型和GS-SVM模型预测效果更优,模型可靠性高,将本模型应用到实际工程中,得到的预测值和真实值相近,R2为0.95、MAE为7.961、RMSE为13.596,能实现爆破块度的爆前预测,有较高的工程应用价值.
Prediction model of GS-KCV-XGBoost open pit metal mine blasting fragmentation based on feature selection
It's important for mass management to predict accurately and efficiently the blasting blocks.For accurate prediction of blast fragmentation,the crucial factors affecting blasting fragmentation are screened out by random forest algorithm and Pearson correlation analysis,and then input into the XGBoost algorithm optimized by GS and KCV.Therefore,we established an GS-KCV-XGBoost blasting fragmentation prediction model.The research results show that the model has better prediction effect and higher reliability than the common model such as random forest regression model,GS-XGB model,and GS-SVM model.When the model is applied to the actual project,the predicted values are close to the real values,with anR2 of 0.95 and an MAE of 7.961 and an RMSE of 13.59.Therefore,this model can achieve pre-explosion prediction of blasting fragmentation,and has high engineering application value.

blasting bragmentation predictionXGBoostfeature selectiongrid searchK-fold cross validation

赵颖、岳中文、薛克军、陈佳瑶、蒋昊洋、王鹏

展开 >

中国矿业大学(北京)力学与土木工程学院,北京 100083

中国矿业大学(北京)隧道工程灾变防控与智能建养全国重点实验室(北京),北京 100083

爆破块度预测 极端梯度提升树 特征选择 网格搜索 K折交叉验证

2024

工程爆破
中国工程爆破协会

工程爆破

CSTPCD北大核心
影响因子:0.848
ISSN:1006-7051
年,卷(期):2024.30(6)