首页|交互式管网缺陷检测智能识别系统研究

交互式管网缺陷检测智能识别系统研究

扫码查看
对闭路电视数据进行城市排水管道缺陷识别处理,常需要人工或者基于深度学习的方法来完成.但人工识别工作量和耗时巨大,而传统的深度学习方法还存在复杂缺陷识别准确率低和需要大量标签等问题,无法满足排水管道异常的类别检测和精确位置确定的要求.为此,发展了一种交互式的基于深度学习的排水管道缺陷内窥检测智能识别方法,可以在样本量较少的情况下不断提高识别效果.该方法通过适当的人工干预,校正识别的结果,并将识别结果自动加入到样本库中,积累和丰富各种缺陷的样本;通过对不断更新的样本的持续学习,可以迅速提高缺陷的识别准确度.在武汉市排水管道视频数据的缺陷识别试验中,虽然各类缺陷样本总共只有1 627个,但总体缺陷识别准确率可以达到68%,验证了该方法的有效性,展示了该方法有良好的应用前景.
Research on an Interactive Intelligent Defect Detection System for Pipeline Networks
Defect identification in urban drainage pipelines based on closed-circuit television(CCTV)data often requires laborious manual efforts or deep learning-based methods.How-ever,manual identification is characterized by an enormous workload and is time-consuming,while traditional deep learning approaches suffer from complex defect recognition with low accuracy and the need for a significant amount of labeled data,which are inadequate for anom-aly classification and precise defect localization in drainage pipelines.To address these chal-lenges,this paper proposes an interactive deep learning-based method for intelligent identifi-cation of defects in drainage pipelines,enabling continuous improvement of recognition per-formance even with limited training samples.The approach leverages appropriate human in-terventions to correct identification results and automatically incorporates them into the sam-ple repository,accumulating and enriching a diverse set of defect samples.Through continu-ous learning from updated samples,the accuracy of defect identification can be rapidly en-hanced.The effectiveness of the proposed method is validated through an experiment with only 1 627 defect samples from video data of the drainage pipeline from Wuhan,China,and its identification accuracy of overall defects could reach 68%,demonstrating promising ap-plication prospects.

deep learninginteractiveintelligentdrainage pipelinespipeline defects

李广超、阮殿勇、李涛、张昊、廖志颖、朱培民

展开 >

黄河勘测规划设计研究院有限公司,河南郑州 450003

中国地质大学地球物理与空间信息学院,湖北武汉 430074

深度学习 交互 智能 排水管道 管道缺陷

水利部重大科技项目

SKR-2022027

2024

工程地球物理学报
中国地质大学(武汉),长江大学

工程地球物理学报

CSTPCD
影响因子:0.994
ISSN:1672-7940
年,卷(期):2024.21(2)
  • 21