首页|基于电流密度模型的自然电场二维正反演研究

基于电流密度模型的自然电场二维正反演研究

扫码查看
为推动自然电位数据解释,本文基于二维电流密度模型开展了自然电位二维正反演研究.首先,基于有限差分法实现了二维自然电位正演计算,并通过与解析解对比,其最大误差不超过2%,验证了正演算法的有效性.在此基础上,建立了关于电流密度的线性正则化反演算法,该正则化算法通过合理选用正则化因子对数据噪声具有一定适应性.通过含5%噪声的合成数据反演测试结果显示,预测数据与合成数据拟合较好.实测数据的反演测试结果显示,反演预测数据与实测数据拟合较好,验证了反演算法的有效性.该反演算法能有效恢复地下电流密度分布,对地下场源的进一步定位提供了有效信息,将有利于进一步提升自然电位数据的解释效果.
Two-dimensional Forward Modeling and Inversion of Natural Electric Field Based on Current Density Model
In order to promote the interpretation of self-potential data,this study focuses on two-dimensional forward modeling and inversion of self-potential based on the two-dimen-sional current density model.Firstly,based on the finite difference method,the two-dimen-sional natural potential orthogonal computation is realized and its maximum error does not exceed 2%by comparing with the analytical solution,which verifies the effectiveness of the orthogonal algorithm.On this basis,a linear regularization inversion algorithm on current density is established,which has certain adaptability to data noise by reasonably selecting regularization factors.The results of the inversion test by synthetic data containing 5%noise show that the predicted data fit well with the synthetic data.The inversion test results of the measured data show that the inversion predicted data fit well with the measured data,verifying the effectiveness of the inversion algorithm.The inversion algorithm can effectively restore the underground current density distribution,and also provides effective information for the further positioning of underground field sources,and also helps to further improve the interpretation of self-potential data.

self-potentialtwo-dimensional forwardtwo-dimensional inversionfinite differ-ence method

王泓晔、汤文武、邓居智、陈辉、米小利、陈满、熊晨、刘文华

展开 >

东华理工大学 地球物理与测控技术学院,江西 南昌 330013

中国石油集团东方地球物理公司,河北 涿州 072751

自然电位 二维正演 二维反演 有限差分法

国家自然科学基金国家自然科学基金中国石油科学研究与技术开发项目

42130811416040862021DJ5303

2024

工程地球物理学报
中国地质大学(武汉),长江大学

工程地球物理学报

CSTPCD
影响因子:0.994
ISSN:1672-7940
年,卷(期):2024.21(3)