首页|基于深度神经网络的地震预警数据实时高频云接收算法

基于深度神经网络的地震预警数据实时高频云接收算法

扫码查看
为提高地震预警数据传输的准确性和实时性,设计一个基于深度神经网络的地震预警数据实时高频云接收算法.采用深度神经网络算法搜索地震预警数据;通过零分析方法确定不同种类振动频率关联性,并利用深度神经网络中每个单元格模拟地震数据,对数据去噪,识别波动信号;通过傅里叶变换方法转换分类信号,通过深度神经网络完成地震预警数据实时高频云接收.实验结果表明,所提出算法的敲击振动数据接收误差低于5 mgal,数据采集所用时间低于42.5 ms,振幅信号接收误差低于1 m·s-1,时速拟合误差低于0.1 km·s-1,接收信号能量偏差小于0.004 J.以上数据证明该接收算法在敲击振动接收、地震振幅接收、速度拟合、能量值接收上具有较高的准确性,能够较为完整地保留原有的地震信号,完善地震预警数据云接收的实时性和高效性.
Real Time High Frequency Cloud Receiving Algorithm of Earthquake Early Warning Data Based on Deep Neural Network
To improve the accuracy and real-time transmission of earthquake warning data,a real-time high-frequency cloud receiving algorithm for earthquake warning data based on deep neural networks is designed.Using deep neural network algorithms to search for earthquake warning data,using zero analysis method to determine the correlation between different types of vibration frequencies,and using each cell in deep neural network to simulate seismic data,denoise the data,and identify fluctuation signals,this paper transforms classification signals through Fourier transform algorithm to achieve real-time high-frequency cloud recep-tion of earthquake warning data through deep neural networks.The experimental results show that the proposed algorithm has a receiving error of less than 5mgal for tapping vibra-tion data,a data acquisition time of less than 42.5 ms,an amplitude signal receiving error of less than 1 m·s-1,a speed fitting error of less than 0.1 km·s-1,and a received signal en-ergy deviation of less than 0.004 J.The above data prove that the receiving algorithm has high accuracy in receiving impact vibration,seismic amplitude,velocity fitting and energy value.It can retain the original seismic signal more completely,and improve the real-time and efficient cloud reception of earthquake warning data.

deep neural networkearthquake early warning datareal timehigh frequency cloudreceivenoise

李振、刘鹏飞、次仁多吉

展开 >

云南省地震局,云南 昆明 650224

西藏自治区地震局,西藏拉萨 850000

深度神经网络 地震预警数据 实时 高频云 接收 噪声

2024

工程地球物理学报
中国地质大学(武汉),长江大学

工程地球物理学报

CSTPCD
影响因子:0.994
ISSN:1672-7940
年,卷(期):2024.21(6)