首页|基于无监督学习的探地雷达图像自动分类

基于无监督学习的探地雷达图像自动分类

扫码查看
探地雷达可以对地下空间中存在的空洞、渗漏、松散等隐患进行排查,有着便捷灵活,操作简单等许多优点.然而,规模化使用探地雷达探测所获得的数据量十分庞大,处理过的图像特征较为复杂,实现自动处理大规模数据并从中快速筛选出存在的异常特征,对于实时和快速排查隐患有重要意义.本文基于无监督学习中的K-means聚类算法,对常见道路异常体和病害的图像进行筛选,从而将存在异常的数据进行快速分类.在本实验中,利用K-means算法对正演模拟产生的样本识别准确率达到了 97.59%;在实际数据的验证中,这一数字可以达到94.51%.实验结果表明:该方法可以无需标记数据特征即可直接进行分类,可为监督学习提供一定的理论基础,为快速识别地下空间隐患,城市道路质量检测等提供参考.
Automatic Classification of Ground Penetrating Radar Images Based on Unsupervised Learning
Ground penetrating radar can investigate hidden dangers such as cavities,leaks,and looseness in underground spaces,enjoying such advantages as convenience,flexibility,and simple operation.However,the amount of data obtained through large-scale ground penetrating radar detection is very large,and the processed image features are relatively com-plex.Automatically processing large-scale data and quickly screening out existing abnormal features is of great significance for real-time and rapid hidden danger investigation.This study employs the K-means clustering algorithm in unsupervised learning to filter images of common road anomalies and diseases,thereby facilitating rapid classification of anomalous data.In this experiment,the K-means algorithm demonstrated a recognition accuracy of 97.59%for samples generated by forward simulation,and reach 94.51%in the verification of actual data.Experimental results show that this method can be directly classified without labeling data features,providing a certain theoretical basis for supervised learning,and pro-viding reference value for rapid identification of underground space hidden dangers,urban road quality detection,etc.

ground penetrating radarforward simulationunsupervised learningK-means clustering algorithmanomaly detection

杜学彬、张雄、丁文蔷

展开 >

东华理工大学江西省防震减灾与工程地质灾害探测工程研究中心,江西南昌 330013

探地雷达 正演模拟 无监督学习 K-means聚类算法 异常识别

2024

工程地球物理学报
中国地质大学(武汉),长江大学

工程地球物理学报

CSTPCD
影响因子:0.994
ISSN:1672-7940
年,卷(期):2024.21(6)