工程地质学报2024,Vol.32Issue(3) :935-946.DOI:10.13544/j.cnki.jeg.2024-0097

基于可解释神经网络的中巴公路沿线区域工程扰动滑坡危险性评价

REGIONAL ENGINEERING DISTURBANCE LANDSLIDE HAZARD EVAL-UATION ALONG CHINA-PAKISTAN HIGHWAY BASED ON INTERPRETA-BLE NEURAL NETWORK

戴勇 孟庆凯 陈世泷 李威 杨立强
工程地质学报2024,Vol.32Issue(3) :935-946.DOI:10.13544/j.cnki.jeg.2024-0097

基于可解释神经网络的中巴公路沿线区域工程扰动滑坡危险性评价

REGIONAL ENGINEERING DISTURBANCE LANDSLIDE HAZARD EVAL-UATION ALONG CHINA-PAKISTAN HIGHWAY BASED ON INTERPRETA-BLE NEURAL NETWORK

戴勇 1孟庆凯 2陈世泷 3李威 4杨立强5
扫码查看

作者信息

  • 1. 中国科学院水利部成都山地灾害与环境研究所,成都 610299,中国;青海大学土木水利学院,西宁 810016,中国
  • 2. 中国科学院水利部成都山地灾害与环境研究所,成都 610299,中国
  • 3. 中国科学院水利部成都山地灾害与环境研究所,成都 610299,中国;成都理工大学地球物理学院,成都 610059,中国
  • 4. 成都理工大学地球与行星科学学院,成都 610059,中国
  • 5. 成都理工大学核技术与自动化工程学院,成都 610059,中国
  • 折叠

摘要

为提高滑坡危险性评价精度、解释工程扰动滑坡风险评估过程,本文以中巴公路沿线区域为例,提出了一种DNN-SHAP可解释神经网络模型.首先选取了距道路距离、坡度等12个危险性评估因子,计算因子间的皮尔逊相关系数,剔除强相关因子,其次构建DNN模型进行滑坡预测,并综合对比随机森林(RF)、支持向量机(SVM)和逻辑回归(LR)模型,最后利用SHAP模型获取DNN预测过程中各因子的影响贡献,完成工程扰动滑坡危险性评价,并解释影响因子间的依赖耦合关系.研究结果表明:本文提出的DNN-SHAP模型预测精度上相比其他3种模型除精准度(Precision)略低于SVM模型以外,其余评价指标均为最高,且该方法可定量揭示道路-岩性、道路-坡度、道路-坡度-地形起伏度等共同作用是该区域工程扰动滑坡灾害的主控因素,为完善滑坡危险性评价方法提供了新的研究思路和技术参考.

Abstract

To enhance the precision of landslide hazard evaluations and elucidate the assessment process of land-slide risks influenced by engineering activities,this study introduces a DNN-SHAP interpretable neural network model using the area along the China-Pakistan Highway as a case study.Initially,12 risk assessment factors such as the distance to the road and slope gradient were selected.The Pearson correlation coefficients among these factors were calculated to exclude highly correlated ones.Subsequently,a DNN(Deep Neural Network)model was devel-oped for landslide prediction and comprehensively compared with Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR)models.Finally,the SH AP(SH apley Additive exPlanations)model was uti-lized to determine the contributory influence of each factor in the DNN prediction process.This completes the evalu-ation of landslide hazards due to engineering disturbances and explains the dependent coupling relationships be-tween influencing factors.The research outcomes demonstrate that,except for the Precision metric where it is slight-ly outperformed by the SVM model,the proposed DNN-SHAP model surpasses the other three models in prediction accuracy.Moreover,the method quantitatively reveals that the synergistic effects of the distance to the road,litholo-gy,and topographic relief are the dominant factors in controlling the engineering-disturbed landslide hazards in this region.This provides new method and technical references for the evaluation of landslide hazard risks.

关键词

滑坡危险性评价/深度神经网络/可解释性/工程扰动/中巴公路沿线区域

Key words

Landslide hazard assessment/Deep Neural Network/Interpretability/Engineering disturbance/Chi-na-Pakistan Highway region

引用本文复制引用

基金项目

第二次青藏科考"重大工程扰动灾害及风险"(2019QZKK0904)

第三次新疆综合科学考察(2022xjkk0600)

国家自然科学基金项目(42371091)

出版年

2024
工程地质学报
中国科学院地质与地球物理研究所

工程地质学报

CSTPCD北大核心
影响因子:1.215
ISSN:1004-9665
参考文献量20
段落导航相关论文