首页|基于WNN模型的短时交通量预测研究

基于WNN模型的短时交通量预测研究

Short-term Traffic Volume Forecasting Model Based on WNN

扫码查看
科学准确预测运营期公路交通量是实现智能交通系统的重要组成部分,并能对公路基础设施的优化设置提供关键支持.本文采用小波神经网络、GA-BP、SVM、GA-LSSVM、PSO-LSSVM五种模型对短时交通量进行预测,并将预测值与实际值进行对比.研究发现:神经网络预测模型整体优于支持向量机及其优化模型,能提升交通量预测的有效性和准确性,其中GA-BP模型相对于其他模型在短期交通量预测中具有预测精度高、收敛速度快的特点,能满足公路运营管理及智能交通需求.
To forecast the traffic volume of the operation period highway scientifically and accurately becomes an important part of intelligent transportation system,which can provide key support for the optimization of highway infrastructure.In this paper,the wavelet neural network,GA-BP,SVM,GA-LSSVM and PSO-LSSVM models are used to forecast the short-term traffic vol-ume,and compared with the actual value.The results show that neural network forecasting model is better than support vector machines and their optimization models,which can improve the effectiveness and accuracy.Compared with other models,GA-BP model has the characteristics of high forecasting accuracy and fast convergence speed,which can meet the needs of highway oper-ation management and the intelligent transportation.

HighwayNeural NetworkSVMShort-term Traffic Volume Forecasting

高毅、罗宇文、邱均远、曾健林

展开 >

中化学南方建设投资有限公司

赣州市南康区拓康工程项目建设有限责任公司

江西理工大学经济管理学院

江西应用技术职业学院信息工程学院

展开 >

公路 神经网络 SVM 短时交通量预测

2024

工程经济
中国建设工程造价管理协会

工程经济

CHSSCD
影响因子:0.481
ISSN:1672-2442
年,卷(期):2024.34(5)