首页|超声速主流下非稳态相变发汗冷却过程研究

超声速主流下非稳态相变发汗冷却过程研究

扫码查看
本文基于"分区建模,界面耦合"的计算技术,对飞行器外部超声速流动过程及防热结构内部以水为工质的发汗冷却过程建立了数值模型,实现了对内外部发汗热质输运过程的耦合求解.结果表明:防热系统表面非均匀非定常的热流分布导致发汗工质发生局部气化,并引发工质分布出现失均现象.随着服役过程的进行,该现象具有内生性的加重趋势.服役30 s后,远来流侧冷却工质流量的峰值高于入口流量的9.1倍,低流量的气相工质区域面积占发汗多孔材料表面积的76%以上.工质液相区域溢出流量上升使发汗多孔材料表面局部形成热导率较高的液膜,降低了发汗结构隔热能力,液相区表面热流(约为0.15 MW m-2)略高于气相区域(约为0.11 MW·m-2).然而,气相工质的冷却能力低,气相区域的升温速率远高于液相区,因此必须发展冷却工质流量调控策略以消除工质气化的影响.
Study on the Unsteady Transpiration Cooling Within the Supersonic Mainstream
Based on the technique of"solving regionally and couping at the interfaces",this paper proposed a coupled model to numerically investigate the transient heat and speices transport during the phase change transpiring cooling process using the water as the working fluid.The results indicated that maldistribution of coolant would occur due to the unsteady and nonuniform heat flux from the supersonic mainstream,and the maldistribution of coolant would inherently exacerbate during the applications.After 30 s of the transpiration cooling,with the coolant flow being squeezed to the downstream,the peak flow rate exceeds the inlet flow rate by the factor of 9.1,and the area of low flow rate region filled by evaporated coolant occupied over 76%of all.The increase flow rate would induce a liquid film at the interface,which could reduce the thermal insulating properties,thus the surface heatflux on the porous region filled with the liquid phase coolant(about 0.15 MW.m-2)would be higher than the region filled with evaporated coolant(about 0.11 MW.m-2).However,the cooling capacity of gaseous fluid is relatively low,and the temperature of porous strucure filled by gasous coolant would rapidly increase.Therefore,regulating the inlet coolant flow would be nescessary to mitigate the effects of local coolant evaporation.

transpiration coolingsupersonic mainstreamcoupled simulationthermal protection

戴嘉鹏、周禹、李冬、曹占伟、李明佳

展开 >

西安交通大学能源与动力工程学院热流科学与工程教育部重点实验室,西安 710049

中国运载火箭技术研究院空间物理重点实验室,北京 100076

北京理工大学机械与车辆学院,北京 100081

发汗冷却 超声速主流 耦合数值模拟 热防护

国家科技重大专项

J2019-Ⅲ-0021-0065

2024

工程热物理学报
中国工程热物理学会 中国科学院工程热物理研究所

工程热物理学报

CSTPCD北大核心
影响因子:0.4
ISSN:0253-231X
年,卷(期):2024.45(2)
  • 13