首页|基于模型迁移学习的木材导热系数预测

基于模型迁移学习的木材导热系数预测

扫码查看
木材导热系数对木结构建筑能耗精准预测具有重要意义,然而目前文献中的模型难以提供全面而准确的预测工具,且一些机器学习模型所考虑的因素和样本数有限。本文构建1941年至今含多种特征的导热系数数据库,并开发对比神经网络和迁移学习模型的预测精度。结果表明,结合迁移学习后,导热系数预测精度可提升23%以上,且迁移学习性能在0~0。3 W·m-1·K-1上精度提升明显,更适合于木结构等传热应用中。本文通过创新的模型参数微调迁移策略能为小样本、含大量缺失值的数据集和简单网络结构的导热系数预测提供思路。
Model-based Transfer Learning for Prediction of Multi-factor Wood Thermal Conductivity
Wood thermal conductivity is important for accurate prediction of energy consumption in timber structure;however,current models in the literature are difficult to provide comprehensive and accurate prediction tools,and some machine learning models have limited factors and sample sizes to consider.In this paper,a database of thermal conductivity coefficients containing multiple features from 1941 to the present was constructed,and a comparison of the prediction accuracy of neural networks and transfer learning models was developed.The results show that the prediction accuracy of thermal conductivity can be improved by more than 23%after combining transfer learn-ing,and the transfer learning performance is significantly improved on 0~0.3 W·m-1·K-1,which is more suitable for heat transfer applications such as timber structures.The novel transfer strategy with fine-tuning can provide ideas for thermal conductivity prediction of small samples,data sets with large number of missing values and simple network structures.

wood thermal conductivitytransfer learningneural network

冯彦皓、俞自涛、陆江、徐旭

展开 >

浙江大学热工与动力系统研究所,杭州 310027

能源高效清洁利用全国重点实验室(浙江大学),杭州 310027

浙江科技学院建筑工程学院,杭州 310023

中国计量大学计量测试工程学院,杭州 310018

展开 >

木材导热系数 迁移学习 神经网络

国家自然科学基金

51978623

2024

工程热物理学报
中国工程热物理学会 中国科学院工程热物理研究所

工程热物理学报

CSTPCD北大核心
影响因子:0.4
ISSN:0253-231X
年,卷(期):2024.45(3)
  • 18