首页|土体导热系数智能方法预测及影响因素敏感性分析

土体导热系数智能方法预测及影响因素敏感性分析

扫码查看
土体导热系数是描述土传热性能的重要参数之一,对其准确地预测和敏感性分析有助于评估岩土工程的热响应热性,预防工程的变形和破坏.基于Kersten团队的土导热系数试验,分析导热系数的影响因素,考虑将温度变量引入传统经验公式并验证,得到对黏土适用性较好的改进经验公式.基于人工智能算法对导热系数建立以土质、干密度、含水率和温度为输入变量的预测模型.分析预测结果表明随机森林模型、径向基函数神经网络(RBFNN)和鲸鱼优化BP神经网络(WOA-BP)都能准确地预测导热系数,其中WOA-BP的预测性能最好,随机森林和RBFNN次之.选用新的样本集对预测模型进行验证,发现模型预测效果依旧很好,具有一定的泛化能力.利用蒙特卡洛模拟对改进经验公式进行参数敏感度分析;再借助随机森林模型对特征重要性进行排序,评估不同输入变量对模型输出的影响程度;最后通过权积法结合WOA-BP计算影响因素敏感性.发现三种方法得出的结果均一致,即导热系数对含水率、干密度、温度和土质的变化敏感程度依次降低.
Prediction of Thermal Conductivity of Soil by Intelligent Methods and Sensitivity Analysis of Influencing Factors
The thermal conductivity of soil is a vital parameter in describing its heat transfer properties.Accurate prediction and sensitivity analysis of this parameter can aid in assessing the thermal response in geotechnical engineering and prevent deformation and damage in projects.Based on thermal conductivity experiments by Kersten's team,we analyzed the factors influencing this pa-rameter.we considered introducing a temperature variable into the traditional empirical formula and conducted validation,resulting in an improved formula with good applicability to clay.Us-ing artificial intelligence algorithms,we established a prediction model for thermal conductivity.The model uses soil type,dry density,water content,and temperature as input variables.Our analysis showed that the Random Forest model,Radial Basis Function Neural Network(RBFNN),and Whale Optimization Algorithm Backpropagation Neural Network(WOA-BP)could all accu-rately predict thermal conductivity.Among these,the WOA-BP model demonstrated the best performance,followed by Random Forest and RBFNN.We tested the prediction model using a new sample set and found that the model still performed well,indicating a certain level of gen-eralization ability.We employed a Monte Carlo simulation for parameter sensitivity analysis of the improved empirical formula.With the Random Forest model,we ranked feature importance to evaluate the impact of different input variables on model output.Finally,we calculated the sensitivity of influencing factors using a weighted product method combined with WOA-BP.The results from all three methods were consistent.They indicated that the sensitivity of thermal conductivity to changes decreases in the order of water content,dry density,temperature,and soil type.

thermal conductivityartificial intelligence algorithmfactor sensitivityMonte Carlo simulationfeature importanceweight product method

姚兆明、王洵、齐健

展开 >

安徽理工大学土木建筑学院,淮南 232001

矿山地下工程教育部工程研究中心,淮南 232001

导热系数 人工智能算法 因素敏感性 蒙特卡洛模拟 特征重要性 权积法

矿山地下工程教育部工程研究中心开放研究项目

JYBGCZX2021104

2024

工程热物理学报
中国工程热物理学会 中国科学院工程热物理研究所

工程热物理学报

CSTPCD北大核心
影响因子:0.4
ISSN:0253-231X
年,卷(期):2024.45(5)
  • 23