首页|面向深度调峰的汽轮机超音速喷嘴设计

面向深度调峰的汽轮机超音速喷嘴设计

扫码查看
"双碳"愿景下可再生能源电力快速增长,其随机波动性迫使火电机组深度调峰以实现电力平衡。然而常规火电机组调节级渐缩式喷嘴难以高效利用临界压比以下的大压差对应的理想焓降,是机组在低负荷工况采用滑压运行致使机组能耗急剧攀升的内在原因之一。本文以320 MW汽轮机常规调节级喷嘴为研究对象,开展面向深度调峰需求(20%~40%低负荷区间)的高效超音速喷嘴设计研究,并通过CFD模拟分析超音速喷嘴的低负荷区热力性能。研究表明,相比于常规喷嘴,设计的超音速喷嘴满足20%~40%负荷区间效率净增1。08%~8。40%;但受超音速喷嘴斜切结构影响,超音速喷嘴I的最优运行压力与设计值偏离了 0。7 MPa。本文的研究成果可为火电机组深度调峰深度节能技术研发提供理论支撑。
Design of High Efficiency Supersonic Nozzle Based on Requirement of Peak Regulation
In order to achieve carbon neutrality,renewable energy power grows rapidly.While its stochastic volatility requires controllable power source,mainly as thermal power units(TPU),to deeply participate in peak regulation to balance the mismatch between power supply and demand.However,in the regulating stage of conventional TPU,the tapering nozzles is difficult to efficiently utilize the enthalpy corresponding to the pressure change below the critical pressure ratio,which is main reason for the efficiency decreases to use sliding-pressure operation mode at low load conditions.In this paper,a high-efficiency supersonic nozzle is designed for deep peaking(20%~40%low load range)of a 320 MW turbine,and the thermal performance of the supersonic nozzle in the low load range is analyzed by CFD simulation.The results show that compared with the conventional nozzle,the designed supersonic nozzles have efficiency improvements of 1.08%~8.40%at 20%~40%rated load.Besides,due to the oblique cutting structure of supersonic nozzle,the optimal operating pressure of supersonic nozzle with a design back pressure of 5 MPa deviates from the design pressure by about 0.7 MPa.The research of this paper can provide theoretical support for the research and development of deep peak shaving and deep energy saving technology for TPU.

deep peak shavingthermal power unitgoverning stagesupersonic nozzlenumerical simulation

甘益明、黄畅、彭世亮、陈思远、王卫良

展开 >

暨南大学能源电力研究中心,珠海 519070

深度调峰 火电机组 调节级 超音速喷嘴 数值模拟

国家自然科学基金广东省基础与应用基金广州市科技计划

523060132021 A1515110835202201011055

2024

工程热物理学报
中国工程热物理学会 中国科学院工程热物理研究所

工程热物理学报

CSTPCD北大核心
影响因子:0.4
ISSN:0253-231X
年,卷(期):2024.45(6)
  • 4